Home
Class 12
MATHS
For any triangle ABC, prove that(b^2 - c...

For any triangle ABC, prove that`(b^2 - c^2) cotA + (c^2 - a^2) cotB + (a^2 - b^2) cotC = 0`

Text Solution

Verified by Experts

Since `a = 2R sin A, b = 2R sin B, and c = 2R sin C`, we have
`(b^(2) -c^(2)) cot A = 4R^(2) (sin^(2) B - sin^(2) C) cot A`
`=4R^(2) sin(B + C) sin (B - C) cot A`
`= 4R^(2) sin A sin (B - C) (cos A)/(sin A)`
`= -4R^(2) sin (B - C) cos (B + C) " " ( :' cos A = - cos (B + C))`
`= -2R^(2) [2 sin (B - C) cos (B + C)]`
`= -2R^(2) [sin 2B - sin 2C]`(i)
Similarly, `(c^(2) -a^(2)) cot B = - 2R^(2) [sin 2 C - sin 2A]` (ii)
and `(a^(2) -b^(2)) cot C = -2R^(2) [sin 2A - sin 2B]` (iii)
Adding Eqs. (i), (ii), and (iii), we get
`(b^(2) - c^(2)) cot A + (c^(2) - a^(2)) cot B + (a^(2) - b^(2)) cot C = 0`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In a Delta A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

For any triangle ABC, prove that (b^2-c^2)/(a^2)sin2A+(c^2-a^2)/(b^2)sin2B+(a^2-b^2)/(c^2)sin2C=0