Home
Class 12
MATHS
Prove that a cos A + b cos B + c cos C =...

Prove that `a cos A + b cos B + c cos C = 4 R sin A sin B sin C.`

Text Solution

AI Generated Solution

To prove that \( a \cos A + b \cos B + c \cos C = 4R \sin A \sin B \sin C \), we will follow these steps: ### Step 1: Express sides in terms of angles and circumradius We know that the sides of the triangle can be expressed in terms of the circumradius \( R \) and the angles \( A, B, C \): \[ a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C \] ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that : a cos A + b cos B + c cos C = 2a sin B sin C

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A, B, C are interior angles of DeltaABC such that (cos A + cos B + cos C)^(2)+(sin A + sin B + sin C)^(2)=9 , then number of possible triangles is

If in a DeltaABC, (a cos A+b cos B+ c cos C)/(a sin B+b sin C+ c sin A)=(a+b+c)/(9R) , then prove that Delta is equilateral.

Let cos A + cos B + cos C = 0 and sin A + sin B + sin C = 0 then which of the following statement(s) is/are correct?

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B )/( cos A - cos B )) ^(n) ={{:(2 cot ^(n) ((A- B)/(2)),"," "if n is even."),(0,",""if n is odd."):}.

If A and B are complementary angles, prove that : cot A cot B - sin A cos B - cos A sin B = 0