Home
Class 12
MATHS
Prove that bc cos^(2).(A)/(2) + ca cos^(...

Prove that `bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{bc \cos^2 A}{2} + \frac{ca \cos^2 B}{2} + \frac{ab \cos^2 C}{2} = s^2, \] where \(s\) is the semi-perimeter of the triangle, we will follow these steps: ### Step 1: Write the expressions for \(\cos^2 A\), \(\cos^2 B\), and \(\cos^2 C\) Using the half-angle formulas, we can express \(\cos^2 A\), \(\cos^2 B\), and \(\cos^2 C\) in terms of the semi-perimeter \(s\) and the sides of the triangle: \[ \cos^2 A = \frac{s(s-a)}{bc}, \quad \cos^2 B = \frac{s(s-b)}{ca}, \quad \cos^2 C = \frac{s(s-c)}{ab}. \] ### Step 2: Substitute these expressions into the left-hand side Now we substitute these expressions into the left-hand side of the equation: \[ \frac{bc \cdot \frac{s(s-a)}{bc}}{2} + \frac{ca \cdot \frac{s(s-b)}{ca}}{2} + \frac{ab \cdot \frac{s(s-c)}{ab}}{2}. \] This simplifies to: \[ \frac{s(s-a)}{2} + \frac{s(s-b)}{2} + \frac{s(s-c)}{2}. \] ### Step 3: Factor out \(\frac{s}{2}\) Now we can factor out \(\frac{s}{2}\): \[ \frac{s}{2} \left( (s-a) + (s-b) + (s-c) \right). \] ### Step 4: Simplify the expression inside the parentheses Now, simplify the expression inside the parentheses: \[ (s-a) + (s-b) + (s-c) = 3s - (a + b + c). \] Since \(s = \frac{a+b+c}{2}\), we have: \[ a + b + c = 2s. \] Thus, \[ 3s - (a + b + c) = 3s - 2s = s. \] ### Step 5: Substitute back into the equation Now substituting back, we have: \[ \frac{s}{2} \cdot s = \frac{s^2}{2}. \] ### Step 6: Final expression Thus, we have: \[ \frac{s^2}{2} = s^2. \] This shows that the left-hand side equals the right-hand side, proving the equation. ### Conclusion Therefore, we have proved that: \[ \frac{bc \cos^2 A}{2} + \frac{ca \cos^2 B}{2} + \frac{ab \cos^2 C}{2} = s^2. \]

To prove that \[ \frac{bc \cos^2 A}{2} + \frac{ca \cos^2 B}{2} + \frac{ab \cos^2 C}{2} = s^2, \] where \(s\) is the semi-perimeter of the triangle, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.5|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.6|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.3|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that : (b-c)/a cos^2 (A/2) + (c-a)/b cos^2 (B/2) + (a-b)/c cos^2 (C/2) = 0

In any DeltaABC , prove that : (cos^2(A/2))/a + (cos^2(B/2))/b + (cos^2(C/2))/c = s^2/(abc)

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta

In DeltaABC , prove that: (bcos^(2)C)/2+(c cos^(2)B)/2=s

If cos ^(-1) .(x)/(a)+ cos ^(-1). (y)/(b) = theta then prove that (x^(2))/(a^(2)) -(2xy)/(ab) . cos theta+ (y^(2))/(b^(2)) = sin ^(2) theta .

In DeltaABC , prove that: (b-c)/acos^(2)A/2+(c-a)/(b)cos^(2)B/2+(a-b)/(c ).cos^(2)C/2=0

Prove that b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)