Home
Class 12
MATHS
show that tan^(-1)(1/2)+tan^(-1)(2/11)=t...

show that `tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right) \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ### Step-by-Step Solution: 1. **Identify \( x \) and \( y \)**: Let \( x = \frac{1}{2} \) and \( y = \frac{2}{11} \). 2. **Calculate \( x + y \)**: \[ x + y = \frac{1}{2} + \frac{2}{11} \] To add these fractions, find a common denominator: \[ = \frac{11}{22} + \frac{4}{22} = \frac{15}{22} \] 3. **Calculate \( xy \)**: \[ xy = \left(\frac{1}{2}\right) \left(\frac{2}{11}\right) = \frac{2}{22} = \frac{1}{11} \] 4. **Check if \( xy < 1 \)**: Since \( \frac{1}{11} < 1 \), we can use the formula. 5. **Calculate \( 1 - xy \)**: \[ 1 - xy = 1 - \frac{1}{11} = \frac{11}{11} - \frac{1}{11} = \frac{10}{11} \] 6. **Apply the formula**: Using the sum of inverse tangents formula: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{\frac{15}{22}}{\frac{10}{11}}\right) \] 7. **Simplify the right-hand side**: \[ \frac{\frac{15}{22}}{\frac{10}{11}} = \frac{15}{22} \times \frac{11}{10} = \frac{15 \times 11}{22 \times 10} = \frac{165}{220} = \frac{3}{4} \] 8. **Conclusion**: Therefore, we have shown that: \[ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right) \]

To show that \( \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right) \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] provided that \( xy < 1 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that: tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)

Prove that : tan^(-1)(2/11)+tan^(-1)(7/24)=tan^(-1)(1/2)