Home
Class 12
MATHS
find the value of sin^(-1)(-sqrt3/2)+cos...

find the value of `sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}(-\sqrt{3}/2) + \cos^{-1}(\sqrt{3}/2) \), we will follow these steps: ### Step 1: Evaluate \( \sin^{-1}(-\sqrt{3}/2) \) The value \( \sin^{-1}(-\sqrt{3}/2) \) corresponds to an angle whose sine is \(-\sqrt{3}/2\). The sine function is negative in the fourth quadrant. The reference angle where sine is \(\sqrt{3}/2\) is \(\pi/3\). Therefore, we have: \[ \sin^{-1}(-\sqrt{3}/2) = -\frac{\pi}{3} \] ### Step 2: Evaluate \( \cos^{-1}(\sqrt{3}/2) \) The value \( \cos^{-1}(\sqrt{3}/2) \) corresponds to an angle whose cosine is \(\sqrt{3}/2\). The angle in the first quadrant where cosine is \(\sqrt{3}/2\) is \(\pi/6\). Therefore, we have: \[ \cos^{-1}(\sqrt{3}/2) = \frac{\pi}{6} \] ### Step 3: Combine the results Now, we add the two results together: \[ \sin^{-1}(-\sqrt{3}/2) + \cos^{-1}(\sqrt{3}/2) = -\frac{\pi}{3} + \frac{\pi}{6} \] ### Step 4: Find a common denominator To add these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6. We rewrite \(-\frac{\pi}{3}\) as: \[ -\frac{\pi}{3} = -\frac{2\pi}{6} \] Now we can add: \[ -\frac{2\pi}{6} + \frac{\pi}{6} = -\frac{2\pi - \pi}{6} = -\frac{\pi}{6} \] ### Final Answer Thus, the final value is: \[ \sin^{-1}(-\sqrt{3}/2) + \cos^{-1}(\sqrt{3}/2) = -\frac{\pi}{6} \] ---

To solve the problem \( \sin^{-1}(-\sqrt{3}/2) + \cos^{-1}(\sqrt{3}/2) \), we will follow these steps: ### Step 1: Evaluate \( \sin^{-1}(-\sqrt{3}/2) \) The value \( \sin^{-1}(-\sqrt{3}/2) \) corresponds to an angle whose sine is \(-\sqrt{3}/2\). The sine function is negative in the fourth quadrant. The reference angle where sine is \(\sqrt{3}/2\) is \(\pi/3\). Therefore, we have: \[ \sin^{-1}(-\sqrt{3}/2) = -\frac{\pi}{3} ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of : sin^(-1) (sqrt(3)/2)

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

The value of sin^(-1)(-sqrt3/2)+cos^(-1)(cos\ (7pi)/6) is a. (5pi)/6 b. pi/2 c. (3pi)/2 d. none of these

Find the principal value of sin^(-1)(sqrt3/2) .

Write the value of tan^(-1)[2sin(2cos^(-1)(sqrt3/2))]

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)