Home
Class 12
MATHS
show that tan^(-1)x+tan^(-1)((2x)/(1-x^2...

show that `tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \quad \text{for } |x| < \frac{1}{\sqrt{3}}, \] we can use the properties of the tangent function and the addition formula for inverse tangents. ### Step-by-step Solution: 1. **Let \( x = \tan(\theta) \)**: - Therefore, \( \tan^{-1}(x) = \theta \). 2. **Substituting into the left-hand side (LHS)**: - The LHS becomes: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \theta + \tan^{-1}\left(\frac{2\tan(\theta)}{1 - \tan^2(\theta)}\right). \] 3. **Using the tangent addition formula**: - Recall that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}. \] - Here, let \( a = \theta \) and \( b = \tan^{-1}\left(\frac{2\tan(\theta)}{1 - \tan^2(\theta)}\right) \). - Then, \( \tan b = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \). 4. **Calculating \( \tan(\theta + b) \)**: - We have: \[ \tan(\theta + b) = \frac{\tan(\theta) + \tan(b)}{1 - \tan(\theta) \tan(b)} = \frac{\tan(\theta) + \frac{2\tan(\theta)}{1 - \tan^2(\theta)}}{1 - \tan(\theta) \cdot \frac{2\tan(\theta)}{1 - \tan^2(\theta)}}. \] - Substituting \( \tan(\theta) = x \): \[ = \frac{x + \frac{2x}{1 - x^2}}{1 - x \cdot \frac{2x}{1 - x^2}}. \] 5. **Simplifying the numerator**: - The numerator becomes: \[ = \frac{x(1 - x^2) + 2x}{1 - x^2} = \frac{x - x^3 + 2x}{1 - x^2} = \frac{3x - x^3}{1 - x^2}. \] 6. **Simplifying the denominator**: - The denominator becomes: \[ = 1 - \frac{2x^2}{1 - x^2} = \frac{(1 - x^2) - 2x^2}{1 - x^2} = \frac{1 - 3x^2}{1 - x^2}. \] 7. **Putting it all together**: - Thus, we have: \[ \tan(\theta + b) = \frac{3x - x^3}{1 - 3x^2}. \] 8. **Identifying the right-hand side (RHS)**: - The RHS is: \[ \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right). \] 9. **Conclusion**: - Therefore, we conclude that: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right). \]

To show that \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \quad \text{for } |x| < \frac{1}{\sqrt{3}}, \] we can use the properties of the tangent function and the addition formula for inverse tangents. ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0) is true if

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Prove that : 1/6tan^(-1)""(2x)/(1-x^2)+1/9tan^(-1)""(3x-x^2)/(1-3x^2)+1/12 tan^(-1)""(4x-4x^3)/((1-6x^2+x^4))= tan^(-1)x

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))