Home
Class 12
MATHS
simplify cos^(-1)((sinx+cosx)/sqrt2),pi/...

simplify `cos^(-1)``((sinx+cosx)/sqrt2)```,`pi/4`< x <`(5pi )/4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \cos^{-1} \left( \frac{\sin x + \cos x}{\sqrt{2}} \right) \) for \( \frac{\pi}{4} < x < \frac{5\pi}{4} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos^{-1} \left( \frac{\sin x + \cos x}{\sqrt{2}} \right) \] ### Step 2: Recognize the trigonometric identity Notice that: \[ \sin x + \cos x = \sqrt{2} \left( \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} \right) \] This can be rewritten using the sine addition formula: \[ \sin x + \cos x = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \] ### Step 3: Substitute into the expression Now, substitute this into the original expression: \[ \frac{\sin x + \cos x}{\sqrt{2}} = \sin \left( x + \frac{\pi}{4} \right) \] Thus, we have: \[ \cos^{-1} \left( \sin \left( x + \frac{\pi}{4} \right) \right) \] ### Step 4: Use the identity for inverse cosine Using the identity \( \cos^{-1}(\sin \theta) = \frac{\pi}{2} - \theta \) when \( \theta \) is in the appropriate range, we can write: \[ \cos^{-1} \left( \sin \left( x + \frac{\pi}{4} \right) \right) = \frac{\pi}{2} - \left( x + \frac{\pi}{4} \right) \] ### Step 5: Simplify the expression Now, simplify the expression: \[ \frac{\pi}{2} - \left( x + \frac{\pi}{4} \right) = \frac{\pi}{2} - x - \frac{\pi}{4} = \frac{\pi}{4} - x \] ### Final Result Thus, we have: \[ \cos^{-1} \left( \frac{\sin x + \cos x}{\sqrt{2}} \right) = \frac{\pi}{4} - x \]

To simplify the expression \( \cos^{-1} \left( \frac{\sin x + \cos x}{\sqrt{2}} \right) \) for \( \frac{\pi}{4} < x < \frac{5\pi}{4} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos^{-1} \left( \frac{\sin x + \cos x}{\sqrt{2}} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: cos^-1((sinx+cosx)/(sqrt(2)))

Simplify: cos^(-1) ((sinx+cosx)/(sqrt(2))) , π/4 < x < (5π)/4

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2))),\ pi/4 < x < (5pi)/4 (ii) cos^(-1)((sinx+cosx)/(sqrt(2))), (5pi)/4 < x < (9pi)/4

The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is

Simplify: sin^(-1)((sinx+cosx)/(sqrt(2))) where - π/4 < x < π/4

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))},\ -(3pi)/4

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2)))

Differentiate the following function with respect to x : sin^(-1){(sinx+cosx)/(sqrt(2))} , -(3pi)/4 lt xlt pi/4

Differentiate cos^(-1){(cosx+sinx)/(sqrt(2))},\ -pi/4

Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/(sqrt(2))},-pi/4ltxltpi/ 4