Home
Class 12
MATHS
If a+btantheta=secthetaand b-atantheta=3...

If `a+btantheta=secthetaand b-atantheta=3sectheta`, then findthe value of `a^2+b^2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a + b \tan \theta = \sec \theta \) 2. \( b - a \tan \theta = 3 \sec \theta \) ### Step 1: Rewrite the equations in terms of sine and cosine. We know that: - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) - \( \sec \theta = \frac{1}{\cos \theta} \) Substituting these into the equations, we have: 1. \( a + b \frac{\sin \theta}{\cos \theta} = \frac{1}{\cos \theta} \) 2. \( b - a \frac{\sin \theta}{\cos \theta} = 3 \frac{1}{\cos \theta} \) ### Step 2: Clear the denominators. Multiply both sides of each equation by \( \cos \theta \): 1. \( a \cos \theta + b \sin \theta = 1 \) (Equation 1) 2. \( b \cos \theta - a \sin \theta = 3 \) (Equation 2) ### Step 3: Square both equations and add them. Now we will square both equations and add them: 1. \( (a \cos \theta + b \sin \theta)^2 = 1^2 \) 2. \( (b \cos \theta - a \sin \theta)^2 = 3^2 \) Expanding both equations: **From Equation 1:** \[ (a \cos \theta + b \sin \theta)^2 = a^2 \cos^2 \theta + 2ab \sin \theta \cos \theta + b^2 \sin^2 \theta = 1 \] **From Equation 2:** \[ (b \cos \theta - a \sin \theta)^2 = b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta + a^2 \sin^2 \theta = 9 \] ### Step 4: Add the two expanded equations. Now we add the two results: \[ (a^2 \cos^2 \theta + 2ab \sin \theta \cos \theta + b^2 \sin^2 \theta) + (b^2 \cos^2 \theta - 2ab \sin \theta \cos \theta + a^2 \sin^2 \theta) = 1 + 9 \] This simplifies to: \[ a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) = 10 \] ### Step 5: Use the Pythagorean identity. Since \( \cos^2 \theta + \sin^2 \theta = 1 \), we can simplify: \[ a^2 \cdot 1 + b^2 \cdot 1 = 10 \] Thus, we have: \[ a^2 + b^2 = 10 \] ### Final Answer: The value of \( a^2 + b^2 \) is \( \boxed{10} \).

To solve the problem, we start with the given equations: 1. \( a + b \tan \theta = \sec \theta \) 2. \( b - a \tan \theta = 3 \sec \theta \) ### Step 1: Rewrite the equations in terms of sine and cosine. We know that: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.3|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.1|8 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If tantheta=(3)/(4) ,then find the value of sectheta+tantheta .

If x=asectheta+btantheta and y=atantheta+bsectheta ,prove that : x^2-y^2=a^2-b^2 .

If sectheta=(2)/(sqrt(3)) ,then find the value of sec2theta .

If 4costheta-3sectheta=2tantheta , then theta is equal to

If sectheta-1=(sqrt(2)-1)tantheta , then general value of theta is:

If sqrt3 sectheta+2=0 , then principal value of theta may be

If cosectheta-sintheta=a^3, sectheta-costheta=b^3 , then prove that a^2b^2(a^2+b^2)=1

If a*b=a^2+b^2, then the value of (4*5)*3 is

If cos e ctheta-sintheta=a^3,sectheta-costheta=b^3, Prove that : a^2b^2(a^2+b^2)=1

If sintheta=3/5 , find the value of (tantheta+sectheta)^2