Home
Class 12
MATHS
Let fK(x)""=1/k(s in^k x+cos^k x) where ...

Let `f_K(x)""=1/k(s in^k x+cos^k x)` where `x in R` and `kgeq1` . Then `f_4(x)-f_6(x)` equals (1) `1/6` (2) `1/3` (3) `1/4` (4) `1/(12)`

A

`1/6`

B

`1/3`

C

`1/4`

D

`1/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f_4(x) - f_6(x) \) where: \[ f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x) \] ### Step 1: Write down the expressions for \( f_4(x) \) and \( f_6(x) \) Using the definition of \( f_k(x) \): \[ f_4(x) = \frac{1}{4} (\sin^4 x + \cos^4 x) \] \[ f_6(x) = \frac{1}{6} (\sin^6 x + \cos^6 x) \] ### Step 2: Set up the expression for \( f_4(x) - f_6(x) \) Now, we can express \( f_4(x) - f_6(x) \): \[ f_4(x) - f_6(x) = \frac{1}{4} (\sin^4 x + \cos^4 x) - \frac{1}{6} (\sin^6 x + \cos^6 x) \] ### Step 3: Find a common denominator The common denominator for \( 4 \) and \( 6 \) is \( 12 \). We rewrite the expression with this common denominator: \[ f_4(x) - f_6(x) = \frac{3}{12} (\sin^4 x + \cos^4 x) - \frac{2}{12} (\sin^6 x + \cos^6 x) \] ### Step 4: Combine the fractions Now we can combine the fractions: \[ f_4(x) - f_6(x) = \frac{3(\sin^4 x + \cos^4 x) - 2(\sin^6 x + \cos^6 x)}{12} \] ### Step 5: Simplify the numerator Using the identity \( a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \) and \( a^6 + b^6 = (a^2 + b^2)(a^4 - a^2b^2 + b^4) \): Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then: \[ \sin^4 x + \cos^4 x = (a^2 + b^2)^2 - 2a^2b^2 = 1 - 2a^2b^2 \] \[ \sin^6 x + \cos^6 x = (a + b)(a^4 - a^2b^2 + b^4) = (1)(1 - 3a^2b^2) = 1 - 3a^2b^2 \] Substituting these into our expression: \[ f_4(x) - f_6(x) = \frac{3(1 - 2a^2b^2) - 2(1 - 3a^2b^2)}{12} \] ### Step 6: Simplify further Now simplify the numerator: \[ = \frac{3 - 6a^2b^2 - 2 + 6a^2b^2}{12} \] \[ = \frac{1}{12} \] ### Final Answer Thus, we find that: \[ f_4(x) - f_6(x) = \frac{1}{12} \] The correct answer is option (4) \( \frac{1}{12} \). ---

To solve the problem, we need to find \( f_4(x) - f_6(x) \) where: \[ f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x) \] ### Step 1: Write down the expressions for \( f_4(x) \) and \( f_6(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced single correct answer type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives JEE Advanced Multiple correct answers type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|11 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

If f_k(x)=1/k(sin^kx+cos^kx) then f_4(x)-f_6 (x)= (A) 1/12 (B) 5/12 (C) (-1)/12 (D) -5/12

f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=ktanx+(1-k)sinx-x , where k in R, g'(x)=

Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) tan^-1(g(x))+C then g(x) is equal to

Let f:""R vec R be defined by f(x)={k-2x , if""xlt=-1 (-2x+3),x >-1} . If f has a local minimum at x=-1 , then a possible value of k is (1) 0 (2) -1/2 (3) -1 (4) 1

Let x _(1) , x _(2), x _(3) be the points where f (x) = | 1-|x-4||, x in R is not differentiable then f (x_(1))+ f(x _(2)) + f (x _(3))=

Let f(x)=a x^2+b x+cw h e ra in R^+a n db^2-4a c<0. Area bounded by y=f(x), x-axis and the lines x=0,x=1 is equal to 1/6(3f(1)+f(-1)+2f(0)) b. 1/(12)(5f(1)+f(-1)+8f(0)) c. 1/6(3f(1)-f(-1)+2f(0)) d. 1/(12)(5f(1)-f(-1)+8f(0))

Find k if fog=gof where f(x)=3x-1 , g(x)=4x+k .

Let f:""RrarrR be defined by f(x)={(k-2x , if xle-1),( 2x+3, if x gt-1):} . If f has a local minimum at x""=""1 , then a possible value of k is (1) 0 (2) -1/2 (3) -1 (4) 1

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is