Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

A

`-1`

B

`i`

C

`2i+95`

D

`97+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{n=0}^{100} i^{n!} \), where \( i = \sqrt{-1} \), we will evaluate the powers of \( i \) for factorial values of \( n \). ### Step-by-Step Solution: 1. **Understanding the Powers of \( i \)**: The powers of \( i \) cycle every 4 terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and the cycle repeats) 2. **Evaluating Factorials**: We need to evaluate \( i^{n!} \) for \( n = 0 \) to \( 100 \). The factorial \( n! \) grows very quickly: - \( 0! = 1 \) - \( 1! = 1 \) - \( 2! = 2 \) - \( 3! = 6 \) - \( 4! = 24 \) - \( 5! = 120 \) - For \( n \geq 4 \), \( n! \) will be a multiple of 4. 3. **Calculating Each Term**: - For \( n = 0 \): \( i^{0!} = i^1 = i \) - For \( n = 1 \): \( i^{1!} = i^1 = i \) - For \( n = 2 \): \( i^{2!} = i^2 = -1 \) - For \( n = 3 \): \( i^{3!} = i^6 = (i^4)(i^2) = 1 \cdot (-1) = -1 \) - For \( n \geq 4 \): Since \( n! \) is a multiple of 4, \( i^{n!} = i^0 = 1 \). 4. **Summing the Values**: Now we sum the contributions: - From \( n = 0 \): \( i \) - From \( n = 1 \): \( i \) - From \( n = 2 \): \( -1 \) - From \( n = 3 \): \( -1 \) - From \( n = 4 \) to \( n = 100 \): Each contributes \( 1 \). The total number of terms from \( n = 4 \) to \( n = 100 \) is \( 100 - 4 + 1 = 97 \). 5. **Final Calculation**: - Contribution from \( n = 0 \) and \( n = 1 \): \( i + i = 2i \) - Contribution from \( n = 2 \) and \( n = 3 \): \( -1 - 1 = -2 \) - Contribution from \( n = 4 \) to \( n = 100 \): \( 97 \cdot 1 = 97 \) Therefore, the total sum is: \[ 2i - 2 + 97 = 2i + 95 \] ### Final Answer: The value of \( \sum_{n=0}^{100} i^{n!} \) is \( 2i + 95 \).

To solve the problem \( \sum_{n=0}^{100} i^{n!} \), where \( i = \sqrt{-1} \), we will evaluate the powers of \( i \) for factorial values of \( n \). ### Step-by-Step Solution: 1. **Understanding the Powers of \( i \)**: The powers of \( i \) cycle every 4 terms: - \( i^0 = 1 \) - \( i^1 = i \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

The value of sum_(i=0)^(n)""^(n-i)C_(r),rin[1,n]capsquare is equal to :