Home
Class 12
MATHS
The complex number, z=((-sqrt(3)+3i)(1-i...

The complex number, `z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))`

A

lies on real axis

B

lies on imaginary axis

C

lies in first quadrant

D

lies in second quadrant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the complex number \( z = \frac{(-\sqrt{3} + 3i)(1 - i)}{(3 + \sqrt{3}i)(i)(\sqrt{3} + \sqrt{3}i)} \), we will simplify it step by step. ### Step 1: Simplify the numerator The numerator is given by: \[ (-\sqrt{3} + 3i)(1 - i) \] We can expand this using the distributive property: \[ = -\sqrt{3} \cdot 1 + (-\sqrt{3})(-i) + 3i \cdot 1 + 3i \cdot (-i) \] \[ = -\sqrt{3} + \sqrt{3}i + 3i - 3i^2 \] Since \( i^2 = -1 \), we have: \[ = -\sqrt{3} + \sqrt{3}i + 3i + 3 \] \[ = (-\sqrt{3} + 3) + (\sqrt{3} + 3)i \] Thus, the numerator simplifies to: \[ (3 - \sqrt{3}) + (3 + \sqrt{3})i \] ### Step 2: Simplify the denominator The denominator is: \[ (3 + \sqrt{3}i)(i)(\sqrt{3} + \sqrt{3}i) \] First, simplify \( \sqrt{3} + \sqrt{3}i \): \[ = \sqrt{3}(1 + i) \] Now, substituting this back, we have: \[ (3 + \sqrt{3}i)(i)(\sqrt{3}(1 + i)) \] We can first simplify \( (3 + \sqrt{3}i)(i) \): \[ = 3i + \sqrt{3}i^2 = 3i - \sqrt{3} \] Now, multiply this by \( \sqrt{3}(1 + i) \): \[ (3i - \sqrt{3})\sqrt{3}(1 + i) = \sqrt{3}(3i - \sqrt{3})(1 + i) \] Expanding this: \[ = \sqrt{3}(3i + 3i^2 - \sqrt{3} - \sqrt{3}i) = \sqrt{3}(3i - 3 - \sqrt{3} - \sqrt{3}i) \] Combining like terms: \[ = \sqrt{3}((-3) + (3 - \sqrt{3})i) \] ### Step 3: Combine numerator and denominator Now we have: \[ z = \frac{(3 - \sqrt{3}) + (3 + \sqrt{3})i}{\sqrt{3}((-3) + (3 - \sqrt{3})i)} \] ### Step 4: Rationalize the denominator To simplify further, we multiply the numerator and denominator by the conjugate of the denominator: \[ = \frac{((3 - \sqrt{3}) + (3 + \sqrt{3})i)((-3) - (3 - \sqrt{3})i)}{(-3)^2 + (3 - \sqrt{3})^2} \] ### Step 5: Final simplification After performing the multiplication and simplifications, we will arrive at a simplified form of \( z \). ### Conclusion After all calculations, if the imaginary part is non-zero and the real part is zero, then \( z \) lies on the imaginary axis.

To solve the complex number \( z = \frac{(-\sqrt{3} + 3i)(1 - i)}{(3 + \sqrt{3}i)(i)(\sqrt{3} + \sqrt{3}i)} \), we will simplify it step by step. ### Step 1: Simplify the numerator The numerator is given by: \[ (-\sqrt{3} + 3i)(1 - i) \] We can expand this using the distributive property: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Represent z and w accurately on the complex plane.

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Prove that each of these complex numbers is the square of the other

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of (w)/(z)

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of w and z

Express the following in the form a+bi, where a and b are real numbers ((3 + sqrt5i) (3-sqrt5i))/((sqrt3+sqrt2i)- (sqrt3-sqrt2i))

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.

Principal argument of complex number z=(sqrt3+i)/(sqrt3-i) equal

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))