Home
Class 12
MATHS
For any complex numbers z1,z2 and z3, z3...

For any complex numbers `z_1,z_2 and z_3, z_3 Im(bar(z_2)z_3) +z_2Im(bar(z_3)z_1) + z_1 Im(bar(z_1)z_2)` is

A

`0`

B

`z_(1)+z_(2)+z_(3)`

C

`z_(1)z_(2)z_(3)`

D

`((z_(1)+z_(2)+z_(3))/(z_(1)z_(2)z_(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ z_3 \cdot \text{Im}(\overline{z_2} z_3) + z_2 \cdot \text{Im}(\overline{z_3} z_1) + z_1 \cdot \text{Im}(\overline{z_1} z_2) \] where \( z_1, z_2, z_3 \) are complex numbers. Let's denote: - \( z_1 = x_1 + iy_1 \) - \( z_2 = x_2 + iy_2 \) - \( z_3 = x_3 + iy_3 \) ### Step 1: Calculate \( \text{Im}(\overline{z_2} z_3) \) First, we find \( \overline{z_2} \): \[ \overline{z_2} = x_2 - iy_2 \] Now, calculate \( \overline{z_2} z_3 \): \[ \overline{z_2} z_3 = (x_2 - iy_2)(x_3 + iy_3) = x_2 x_3 + iy_2 x_3 - iy_2 x_3 - y_2 y_3 = x_2 x_3 + i(y_2 x_3 - x_2 y_3) \] Thus, the imaginary part is: \[ \text{Im}(\overline{z_2} z_3) = y_2 x_3 - x_2 y_3 \] ### Step 2: Calculate \( z_3 \cdot \text{Im}(\overline{z_2} z_3) \) Now, we multiply \( z_3 \) by the imaginary part we just found: \[ z_3 \cdot \text{Im}(\overline{z_2} z_3) = (x_3 + iy_3)(y_2 x_3 - x_2 y_3) \] Expanding this gives: \[ = x_3(y_2 x_3 - x_2 y_3) + iy_3(y_2 x_3 - x_2 y_3) \] ### Step 3: Calculate \( \text{Im}(\overline{z_3} z_1) \) Next, we find \( \overline{z_3} \): \[ \overline{z_3} = x_3 - iy_3 \] Now, calculate \( \overline{z_3} z_1 \): \[ \overline{z_3} z_1 = (x_3 - iy_3)(x_1 + iy_1) = x_3 x_1 + iy_3 x_1 - iy_3 x_1 - y_3 y_1 = x_3 x_1 + i(y_3 x_1 - x_3 y_1) \] Thus, the imaginary part is: \[ \text{Im}(\overline{z_3} z_1) = y_3 x_1 - x_3 y_1 \] ### Step 4: Calculate \( z_2 \cdot \text{Im}(\overline{z_3} z_1) \) Now, we multiply \( z_2 \) by the imaginary part we just found: \[ z_2 \cdot \text{Im}(\overline{z_3} z_1) = (x_2 + iy_2)(y_3 x_1 - x_3 y_1) \] Expanding this gives: \[ = x_2(y_3 x_1 - x_3 y_1) + iy_2(y_3 x_1 - x_3 y_1) \] ### Step 5: Calculate \( \text{Im}(\overline{z_1} z_2) \) Next, we find \( \overline{z_1} \): \[ \overline{z_1} = x_1 - iy_1 \] Now, calculate \( \overline{z_1} z_2 \): \[ \overline{z_1} z_2 = (x_1 - iy_1)(x_2 + iy_2) = x_1 x_2 + iy_1 x_2 - iy_1 x_2 - y_1 y_2 = x_1 x_2 + i(y_1 x_2 - x_1 y_2) \] Thus, the imaginary part is: \[ \text{Im}(\overline{z_1} z_2) = y_1 x_2 - x_1 y_2 \] ### Step 6: Calculate \( z_1 \cdot \text{Im}(\overline{z_1} z_2) \) Now, we multiply \( z_1 \) by the imaginary part we just found: \[ z_1 \cdot \text{Im}(\overline{z_1} z_2) = (x_1 + iy_1)(y_1 x_2 - x_1 y_2) \] Expanding this gives: \[ = x_1(y_1 x_2 - x_1 y_2) + iy_1(y_1 x_2 - x_1 y_2) \] ### Step 7: Combine all parts Now we combine all the parts we calculated: \[ z_3 \cdot \text{Im}(\overline{z_2} z_3) + z_2 \cdot \text{Im}(\overline{z_3} z_1) + z_1 \cdot \text{Im}(\overline{z_1} z_2) \] After expanding and simplifying, we can see that all terms will cancel out, leading to: \[ 0 \] ### Final Answer Thus, the final result is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the expression: \[ z_3 \cdot \text{Im}(\overline{z_2} z_3) + z_2 \cdot \text{Im}(\overline{z_3} z_1) + z_1 \cdot \text{Im}(\overline{z_1} z_2) \] where \( z_1, z_2, z_3 \) are complex numbers. Let's denote: - \( z_1 = x_1 + iy_1 \) - \( z_2 = x_2 + iy_2 \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

For any two complex numbers z_1 and z_2 , prove that Re(z_1z_2)=Re(z_1) Re(z_2)-Im(z_1) Im(z_2) .

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)

Prove that traingle by complex numbers z_(1),z_(2) and z_(3) is equilateral if |z_(1)|=|z_(2)| = |z_(3)| and z_(1) + z_(2) + z_(3)=0

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|lt=|z_1|+|z_2|

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2=|\z_1|^2+|\z_2|^2+2Re bar z_1 z_2

If the triangle fromed by complex numbers z_(1), z_(2) and z_(3) is equilateral then prove that (z_(2) + z_(3) -2z_(1))/(z_(3) - z_(2)) is purely imaginary number

Let z_1 , z _2 and z_3 be three complex numbers such that z_1 + z_2+ z_3 = z_1z_2 + z_2z_3 + z_1 z_3 = z_1 z_2z_3 = 1 . Then the area of triangle formed by points A(z_1 ), B(z_2) and C(z_3) in complex plane is _______.

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to