Home
Class 12
MATHS
The modulus and amplitude of (1+2i)/(1-(...

The modulus and amplitude of `(1+2i)/(1-(1-i)^(2))` are

A

`sqrt(2)` and `(pi)/(6)`

B

`1` and `(pi)/(4)`

C

`1` and `0`

D

`1` and `(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and amplitude of the complex number \(\frac{1+2i}{1-(1-i)^2}\), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify the expression in the denominator, \(1 - (1 - i)^2\). Calculating \((1 - i)^2\): \[ (1 - i)^2 = 1^2 - 2 \cdot 1 \cdot i + i^2 = 1 - 2i + (-1) = -2i \] Now substituting this back into the denominator: \[ 1 - (1 - i)^2 = 1 - (-2i) = 1 + 2i \] ### Step 2: Rewrite the complex number Now we can rewrite the complex number: \[ \frac{1 + 2i}{1 + 2i} \] ### Step 3: Simplify the fraction Since the numerator and denominator are the same, we can simplify: \[ \frac{1 + 2i}{1 + 2i} = 1 \] ### Step 4: Find the modulus The modulus of a real number \(1\) is simply: \[ |1| = 1 \] ### Step 5: Find the amplitude The amplitude (or argument) of a real number is: \[ \text{arg}(1) = 0 \] ### Final Result Thus, the modulus and amplitude of the given complex number are: - Modulus: \(1\) - Amplitude: \(0\)

To find the modulus and amplitude of the complex number \(\frac{1+2i}{1-(1-i)^2}\), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify the expression in the denominator, \(1 - (1 - i)^2\). Calculating \((1 - i)^2\): \[ (1 - i)^2 = 1^2 - 2 \cdot 1 \cdot i + i^2 = 1 - 2i + (-1) = -2i ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and amplitude of (2+i)/(4i+(1+i)^(2)) .

Find the modulus and amplitude of ( 2+ i)/( 4i +(1+i) ^(2))

Find the modulus and amplitude of -4i

Find the modulus and amplitude of (2 + 3i)/(3+2i)

Find the modulus and amplitude of (-1)/(2)+ (sqrt3)/(2)i

The amplitude of (1)/(i) is

Write the amplitude of (1)/(i) .

Simplify : (1+2i)/(1-2i)-(1-2i)/(1+2i)

Find modulus of (i) (2+4i)/(2-6i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i) .