Home
Class 12
MATHS
If the argument of (z-a)(barz-b) is equa...

If the argument of `(z-a)(barz-b)` is equal to that `((sqrt(3)+i)(1+sqrt(3)i)/(1+i))` where a,b,c are two real number and z is the complex conjugate o the complex number z find the locus of z in the rgand diagram. Find the value of a and b so that locus becomes a circle having its centre at `1/2(3+i)`

A

`(3,2)`

B

`(2,1)`

C

`(2,3)`

D

`(2,4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of the complex number \( z \) given that the argument of \( (z-a)(\overline{z}-b) \) is equal to the argument of the expression \( \frac{(\sqrt{3}+i)(1+\sqrt{3}i)}{1+i} \). We also need to find the values of \( a \) and \( b \) such that the locus is a circle centered at \( \frac{1}{2}(3+i) \). ### Step-by-Step Solution: 1. **Understanding the Expression**: Given: \[ \text{arg}((z-a)(\overline{z}-b)) = \text{arg}\left(\frac{(\sqrt{3}+i)(1+\sqrt{3}i)}{1+i}\right) \] 2. **Calculate the Right-Hand Side**: First, we need to simplify the right-hand side: - Calculate \( (\sqrt{3}+i)(1+\sqrt{3}i) \): \[ = \sqrt{3} + 3i + i = \sqrt{3} + 3i + i = \sqrt{3} + 4i \] - Now divide by \( 1+i \): \[ \frac{\sqrt{3} + 4i}{1+i} \] To divide, multiply the numerator and denominator by the conjugate of the denominator: \[ = \frac{(\sqrt{3} + 4i)(1-i)}{(1+i)(1-i)} = \frac{\sqrt{3} - \sqrt{3}i + 4i + 4}{1^2 + 1^2} = \frac{(\sqrt{3} + 4) + (4 - \sqrt{3})i}{2} \] - Thus, we have: \[ = \frac{\sqrt{3} + 4}{2} + \frac{4 - \sqrt{3}}{2}i \] 3. **Finding the Argument**: The argument of a complex number \( x + yi \) is given by: \[ \text{arg}(x + yi) = \tan^{-1}\left(\frac{y}{x}\right) \] Here, \( x = \frac{\sqrt{3} + 4}{2} \) and \( y = \frac{4 - \sqrt{3}}{2} \). Therefore: \[ \text{arg}\left(\frac{\sqrt{3} + 4}{2} + \frac{4 - \sqrt{3}}{2}i\right) = \tan^{-1}\left(\frac{4 - \sqrt{3}}{\sqrt{3} + 4}\right) \] 4. **Setting Up the Locus**: The argument condition gives us: \[ \text{arg}((z-a)(\overline{z}-b)) = \text{arg}\left(\frac{\sqrt{3} + 4}{2} + \frac{4 - \sqrt{3}}{2}i\right) \] This implies that the points \( z \) and \( \overline{z} \) are such that the line segments from \( a \) to \( z \) and from \( b \) to \( \overline{z} \) form a constant angle. 5. **Finding the Circle Center**: The center of the circle is given as \( \frac{1}{2}(3+i) \). We can write: \[ a + b = 3 \quad \text{(real part)} \] \[ a - b = 1 \quad \text{(imaginary part)} \] 6. **Solving the System of Equations**: From the equations: - Adding: \[ 2a = 4 \Rightarrow a = 2 \] - Substituting \( a \) back: \[ 2 + b = 3 \Rightarrow b = 1 \] ### Final Result: Thus, the values of \( a \) and \( b \) are: \[ \boxed{a = 2, b = 1} \]

To solve the problem, we need to find the locus of the complex number \( z \) given that the argument of \( (z-a)(\overline{z}-b) \) is equal to the argument of the expression \( \frac{(\sqrt{3}+i)(1+\sqrt{3}i)}{1+i} \). We also need to find the values of \( a \) and \( b \) such that the locus is a circle centered at \( \frac{1}{2}(3+i) \). ### Step-by-Step Solution: 1. **Understanding the Expression**: Given: \[ \text{arg}((z-a)(\overline{z}-b)) = \text{arg}\left(\frac{(\sqrt{3}+i)(1+\sqrt{3}i)}{1+i}\right) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Show that |(2z + 5)(sqrt2-i)|=sqrt(3) |2z+5| , where z is a complex number.

Represent the complex numbers z= 1 + sqrt3i into polar form

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus of the following complex number: z=-sqrt(3)+i

If (|2z - 3|)/(|z-i|)= k is the equation of circle with complex number 'I' lying inside the circle, find the values of K.

If z is a complex number such that |z - barz| +|z + barz| = 4 then find the area bounded by the locus of z.

For a complex number Z, if the argument of (Z-a)(barZ-b) is (pi)/(4) or (-3pi)/(4) (where a, b are two real numbers), then the value of ab such that the locus of Z represents a circle with centre (3)/(2)+(i)/(2) is (where, i^(2)=-1 )

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Prove that each of these complex numbers is the square of the other

For a complex number z, the product of the real parts of the roots of the equation z^(2)-z=5-5i is (where, i=sqrt(-1) )

Find the locus of a complex number z=x +yi , satisfying the relation |z +i|=|z+ 2| . Illustrate the locus of z in the Argand plane