Home
Class 12
MATHS
If a complex number z satisfies |z|^(2)+...

If a complex number `z` satisfies `|z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0`, then the maximum value of `|z|` is

A

`sqrt(6)+1`

B

`4`

C

`2+sqrt(6)`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the maximum value of the modulus of the complex number \( z \) that satisfies the equation: \[ |z|^2 + \frac{4}{|z|^2} - 2\left(\frac{z}{\bar{z}} + \frac{\bar{z}}{z}\right) - 16 = 0 \] Let's denote \( |z| = r \). We can express \( z \) in polar form as \( z = r(\cos \theta + i \sin \theta) \), where \( \bar{z} = r(\cos \theta - i \sin \theta) \). ### Step 1: Rewrite the equation First, we rewrite the term \( \frac{z}{\bar{z}} + \frac{\bar{z}}{z} \): \[ \frac{z}{\bar{z}} = \frac{r(\cos \theta + i \sin \theta)}{r(\cos \theta - i \sin \theta)} = \frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta} \] This simplifies to: \[ \frac{z}{\bar{z}} + \frac{\bar{z}}{z} = 2 \cos(2\theta) \] ### Step 2: Substitute into the equation Now substitute this back into the original equation: \[ |z|^2 + \frac{4}{|z|^2} - 2(2 \cos(2\theta)) - 16 = 0 \] This simplifies to: \[ r^2 + \frac{4}{r^2} - 4 \cos(2\theta) - 16 = 0 \] ### Step 3: Rearranging the equation Rearranging gives: \[ r^2 + \frac{4}{r^2} - 4 \cos(2\theta) = 16 \] ### Step 4: Multiply through by \( r^2 \) To eliminate the fraction, multiply through by \( r^2 \): \[ r^4 - 16r^2 + 4 - 4r^2 \cos(2\theta) = 0 \] ### Step 5: Factor the equation Rearranging gives: \[ r^4 - (16 + 4 \cos(2\theta))r^2 + 4 = 0 \] Let \( x = r^2 \), then we have a quadratic equation: \[ x^2 - (16 + 4 \cos(2\theta))x + 4 = 0 \] ### Step 6: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{(16 + 4 \cos(2\theta)) \pm \sqrt{(16 + 4 \cos(2\theta))^2 - 16}}{2} \] ### Step 7: Find the maximum value of \( r^2 \) To maximize \( r^2 \), we need to maximize \( \cos(2\theta) \). The maximum value of \( \cos(2\theta) \) is 1. Substituting \( \cos(2\theta) = 1 \): \[ x = \frac{(16 + 4 \cdot 1) \pm \sqrt{(16 + 4)^2 - 16}}{2} \] \[ x = \frac{20 \pm \sqrt{400 - 16}}{2} \] \[ x = \frac{20 \pm \sqrt{384}}{2} \] \[ x = \frac{20 \pm 8\sqrt{6}}{2} \] \[ x = 10 \pm 4\sqrt{6} \] ### Step 8: Choose the maximum value The maximum value of \( r^2 \) is \( 10 + 4\sqrt{6} \). ### Step 9: Find \( r \) Thus, the maximum value of \( |z| \) is: \[ |z| = \sqrt{10 + 4\sqrt{6}} \] ### Final Answer The maximum value of \( |z| \) is \( \sqrt{10 + 4\sqrt{6}} \). ---

To solve the given problem, we need to find the maximum value of the modulus of the complex number \( z \) that satisfies the equation: \[ |z|^2 + \frac{4}{|z|^2} - 2\left(\frac{z}{\bar{z}} + \frac{\bar{z}}{z}\right) - 16 = 0 \] Let's denote \( |z| = r \). We can express \( z \) in polar form as \( z = r(\cos \theta + i \sin \theta) \), where \( \bar{z} = r(\cos \theta - i \sin \theta) \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z satisfies the equation ((z-2)/(z+2))((barz-2)/(barz+2))=1 , then minimum value of |z| is equal to :

(1) Re((z1z2)/(barz1))

Number of complex numbers satisfying z^3 = barz is

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is

If complex number z(z!=2) satisfies the equation z^2=4z+|z|^2+(16)/(|z|^3) ,then the value of |z|^4 is______.

If z is a non -zero complex number then (|barz|^(2))/(zbarz) is equal to

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

Let A(z_(1)) and B(z_(2)) are two distinct non-real complex numbers in the argand plane such that (z_(1))/(z_(2))+(barz_(1))/(z_(2))=2 . The value of |/_ABO| is

If z is a complex number satisfying |z|^(2)-|z|-2 lt 0 , then the value of |z^(2)+zsintheta| , for all values of theta , is