Home
Class 12
MATHS
The least value of |z-3-4i|^(2)+|z+2-7i|...

The least value of `|z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2)` occurs when z=

A

`1+3i`

B

`3+3i`

C

`3+4i`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the expression \( |z - 3 - 4i|^2 + |z + 2 - 7i|^2 + |z - 5 + 2i|^2 \), we will follow these steps: 1. **Substitute \( z \)**: Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. Therefore, we can rewrite the expression as: \[ |(x + yi) - (3 + 4i)|^2 + |(x + yi) - (-2 + 7i)|^2 + |(x + yi) - (5 - 2i)|^2 \] 2. **Calculate the Modulus**: We can express each term: - \( |z - (3 + 4i)|^2 = |(x - 3) + (y - 4)i|^2 = (x - 3)^2 + (y - 4)^2 \) - \( |z - (-2 + 7i)|^2 = |(x + 2) + (y - 7)i|^2 = (x + 2)^2 + (y - 7)^2 \) - \( |z - (5 - 2i)|^2 = |(x - 5) + (y + 2)i|^2 = (x - 5)^2 + (y + 2)^2 \) 3. **Combine the Terms**: Now, we can write the total expression: \[ (x - 3)^2 + (y - 4)^2 + (x + 2)^2 + (y - 7)^2 + (x - 5)^2 + (y + 2)^2 \] 4. **Expand Each Square**: - \( (x - 3)^2 = x^2 - 6x + 9 \) - \( (y - 4)^2 = y^2 - 8y + 16 \) - \( (x + 2)^2 = x^2 + 4x + 4 \) - \( (y - 7)^2 = y^2 - 14y + 49 \) - \( (x - 5)^2 = x^2 - 10x + 25 \) - \( (y + 2)^2 = y^2 + 4y + 4 \) 5. **Combine Like Terms**: \[ = 3x^2 + 3y^2 - 12x - 18y + 103 \] 6. **Find the Minimum Value**: To minimize \( 3x^2 + 3y^2 - 12x - 18y + 103 \), we can complete the square for both \( x \) and \( y \). - For \( x \): \[ 3(x^2 - 4x) = 3((x - 2)^2 - 4) = 3(x - 2)^2 - 12 \] - For \( y \): \[ 3(y^2 - 6y) = 3((y - 3)^2 - 9) = 3(y - 3)^2 - 27 \] Therefore, the expression becomes: \[ 3(x - 2)^2 + 3(y - 3)^2 + 103 - 12 - 27 = 3(x - 2)^2 + 3(y - 3)^2 + 64 \] 7. **Determine the Minimum**: The minimum value occurs when \( (x - 2)^2 = 0 \) and \( (y - 3)^2 = 0 \), which gives \( x = 2 \) and \( y = 3 \). 8. **Final Result**: Thus, the least value occurs when: \[ z = 2 + 3i \]

To find the least value of the expression \( |z - 3 - 4i|^2 + |z + 2 - 7i|^2 + |z - 5 + 2i|^2 \), we will follow these steps: 1. **Substitute \( z \)**: Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. Therefore, we can rewrite the expression as: \[ |(x + yi) - (3 + 4i)|^2 + |(x + yi) - (-2 + 7i)|^2 + |(x + yi) - (5 - 2i)|^2 \] 2. **Calculate the Modulus**: We can express each term: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Least value of |z-2|+|z-4i| is

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

Find the greatest and least value of |z_(1)+z_(2)|=" if " z_(1)=24 + 7i and |z_(2)|=7

If z be a complex number, then |z-3-4i|^(2)+|z+4+2i|^(2)=k represents a circle, if k is equal to

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If i^(2)=-1 , then for a complex number Z the minimum value of |Z|+|Z-3|+|Z+i|+|Z-3-2i| occurs at

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z = 3 -2i then the value s of (Rez) (Im z)^(2) is

If |z-2-3i|^(2) + |z- 5 - 7i|^(2)= lambda respresents the equation of circle with least radius, then find the value of lambda .