Home
Class 12
MATHS
The roots of the equation x^(4)-2x^(2)+4...

The roots of the equation `x^(4)-2x^(2)+4=0` are the vertices of `a` :

A

square inscribed in a circle of radius `2`

B

rectangle inscribed in a circle of radius `2`

C

square inscribed in a circle of radius `sqrt(2)`

D

rectangle inscribed in a circle of radius `sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 - 2x^2 + 4 = 0 \) and find the roots, we can follow these steps: ### Step 1: Substitute \( x^2 \) with \( t \) Let \( t = x^2 \). Then the equation becomes: \[ t^2 - 2t + 4 = 0 \] ### Step 2: Identify coefficients In the quadratic equation \( at^2 + bt + c = 0 \), we have: - \( a = 1 \) - \( b = -2 \) - \( c = 4 \) ### Step 3: Use the quadratic formula The quadratic formula is given by: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ t = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \] This simplifies to: \[ t = \frac{2 \pm \sqrt{4 - 16}}{2} \] \[ t = \frac{2 \pm \sqrt{-12}}{2} \] ### Step 4: Simplify the square root Since \( \sqrt{-12} = \sqrt{12}i = 2\sqrt{3}i \), we can write: \[ t = \frac{2 \pm 2\sqrt{3}i}{2} \] This simplifies to: \[ t = 1 \pm \sqrt{3}i \] ### Step 5: Solve for \( x \) Recall that \( t = x^2 \). Therefore, we have: \[ x^2 = 1 + \sqrt{3}i \quad \text{and} \quad x^2 = 1 - \sqrt{3}i \] ### Step 6: Find the square roots To find \( x \), we need to compute the square roots of the complex numbers. 1. For \( x^2 = 1 + \sqrt{3}i \): - Convert to polar form: - Magnitude: \( r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2 \) - Argument: \( \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \) - Thus, \( x^2 = 2 \left( \cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right) \) - Taking the square root: \[ x = \sqrt{2} \left( \cos\frac{\pi/3}{2} + i \sin\frac{\pi/3}{2} \right) = \sqrt{2} \left( \cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right) \] - This gives: \[ x = \sqrt{2} \left( \frac{\sqrt{3}}{2} + i \frac{1}{2} \right) \quad \text{and} \quad x = -\sqrt{2} \left( \frac{\sqrt{3}}{2} + i \frac{1}{2} \right) \] 2. For \( x^2 = 1 - \sqrt{3}i \): - Similarly, convert to polar form: - Magnitude: \( r = 2 \) - Argument: \( \theta = \tan^{-1}\left(-\frac{\sqrt{3}}{1}\right) = -\frac{\pi}{3} \) - Thus, \( x^2 = 2 \left( \cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right) \) - Taking the square root: \[ x = \sqrt{2} \left( \cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right) \right) \] - This gives: \[ x = \sqrt{2} \left( \frac{\sqrt{3}}{2} - i \frac{1}{2} \right) \quad \text{and} \quad x = -\sqrt{2} \left( \frac{\sqrt{3}}{2} - i \frac{1}{2} \right) \] ### Step 7: List the roots The four roots are: 1. \( x_1 = \sqrt{2} \left( \frac{\sqrt{3}}{2} + i \frac{1}{2} \right) \) 2. \( x_2 = -\sqrt{2} \left( \frac{\sqrt{3}}{2} + i \frac{1}{2} \right) \) 3. \( x_3 = \sqrt{2} \left( \frac{\sqrt{3}}{2} - i \frac{1}{2} \right) \) 4. \( x_4 = -\sqrt{2} \left( \frac{\sqrt{3}}{2} - i \frac{1}{2} \right) \) ### Conclusion The roots \( x_1, x_2, x_3, x_4 \) represent the vertices of a rectangle in the complex plane. ---

To solve the equation \( x^4 - 2x^2 + 4 = 0 \) and find the roots, we can follow these steps: ### Step 1: Substitute \( x^2 \) with \( t \) Let \( t = x^2 \). Then the equation becomes: \[ t^2 - 2t + 4 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation x^(4)-2x^(3)+x-380=0 are

The roots of the equation x^(2)-4x+13=0 are

The roots of the equation 4x^2-2sqrt5 x +1=0 are .

Find the roots of the equations. Q. 5x^(2)-x+4=0 .

If the roots of the equation ax^(2)-4x+a^(2)=0 are imaginery and the sum of the roots is equal to their product then a is

The sum of roots of the equation x^2−∣2x−3∣−4=0 is

Real roots of equation x^2 + 5 |x| + 4 = 0 are

If alpha and beta are the roots of the equation ax^(2)+bc+c=0 then the sum of the roots of the equation a^(2)x^(2)+(b^(2)-2ac)x+b^(2)-4ac=0 is