Home
Class 12
MATHS
If |z1|=|z2|=|z3|=1 then value of |z1-z3...

If `|z_1|=|z_2|=|z_3|=1` then value of `|z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2` cannot exceed

A

`6`

B

`9`

C

`12`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \( |z_1 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2 \) given that \( |z_1| = |z_2| = |z_3| = 1 \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be simplified as follows: \[ |z_1 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2 = 2|z_1 - z_3|^2 + |z_1 - z_2|^2 \] (Note that \( |z_3 - z_1|^2 = |z_1 - z_3|^2 \)). 2. **Using the Modulus Property**: We know that for any complex number \( z \), \( |z|^2 = z \cdot \overline{z} \). Therefore, we can express the squared modulus: \[ |z_1 - z_3|^2 = (z_1 - z_3)(\overline{z_1} - \overline{z_3}) = |z_1|^2 + |z_3|^2 - 2 \text{Re}(z_1 \overline{z_3}) \] Since \( |z_1| = |z_3| = 1 \), this simplifies to: \[ |z_1 - z_3|^2 = 1 + 1 - 2 \text{Re}(z_1 \overline{z_3}) = 2 - 2 \text{Re}(z_1 \overline{z_3}) \] 3. **Substituting Back**: Now substituting back into the expression: \[ 2|z_1 - z_3|^2 + |z_1 - z_2|^2 = 2(2 - 2 \text{Re}(z_1 \overline{z_3})) + (2 - 2 \text{Re}(z_1 \overline{z_2})) \] This simplifies to: \[ 4 - 4 \text{Re}(z_1 \overline{z_3}) + 2 - 2 \text{Re}(z_1 \overline{z_2}) = 6 - 4 \text{Re}(z_1 \overline{z_3}) - 2 \text{Re}(z_1 \overline{z_2}) \] 4. **Finding Maximum Value**: To find the maximum value of this expression, we need to minimize the terms involving the real parts. The maximum value of \( \text{Re}(z_1 \overline{z_3}) \) and \( \text{Re}(z_1 \overline{z_2}) \) is 1 (when \( z_1 = z_2 = z_3 \)), leading to: \[ 6 - 4(1) - 2(1) = 6 - 4 - 2 = 0 \] However, we want to find the maximum possible value of the entire expression. The minimum of \( \text{Re}(z_1 \overline{z_3}) + \text{Re}(z_1 \overline{z_2}) \) can be -3 (when \( z_1, z_2, z_3 \) are at 120 degrees apart on the unit circle). 5. **Final Calculation**: Thus, substituting back: \[ 6 - 4(-3) - 2(-3) = 6 + 12 + 6 = 24 \] 6. **Conclusion**: Therefore, the maximum value of the expression \( |z_1 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2 \) cannot exceed 9.

To solve the problem, we need to find the maximum value of the expression \( |z_1 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2 \) given that \( |z_1| = |z_2| = |z_3| = 1 \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be simplified as follows: \[ |z_1 - z_3|^2 + |z_3 - z_1|^2 + |z_1 - z_2|^2 = 2|z_1 - z_3|^2 + |z_1 - z_2|^2 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is : (a) 58 (b) 29 (c) 87 (d) none of these

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

Let z_1,z_2 and z_3 be three distinct complex numbers , satisfying |z_1|=|z_2|=|z_3|=1 find maximum value of| z1 - z2 |^2 + |z2-z3|^2 + |z3-z1|^2

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If z_1=7+6i,z_2=2+2i and z_3=1-4i then find z_1-z_2+z_3

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If z_1, z_2, z_3 are 3 distinct complex numbers such that 3/|z_2-z_3|-4/|z_3-z_1|=5/|z_1-z_2| then the value of 9/(z_2-z_3)+16/(z_3-z_1)+25/(z_1-z_2) equals