Home
Class 12
MATHS
If az^2+bz+1=0, where a,b in C, |a|=1/2 ...

If `az^2+bz+1=0`, where `a,b in C`, `|a|=1/2` and have a root `alpha` such that `|alpha|=1` then `|abarb-b|=`

A

`1//4`

B

`1//2`

C

`5//4`

D

`3//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the quadratic equation given by \( az^2 + bz + 1 = 0 \) where \( a, b \in \mathbb{C} \), \( |a| = \frac{1}{2} \), and one of the roots \( \alpha \) satisfies \( |\alpha| = 1 \). We are required to find \( | \overline{a} b - b | \). ### Step-by-Step Solution: 1. **Understanding the Roots**: Given the quadratic equation \( az^2 + bz + 1 = 0 \), we can denote the roots as \( \alpha \) and \( \beta \). By Vieta's formulas, we know: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{1}{a} \] 2. **Expressing \( \beta \)**: Since \( |\alpha| = 1 \), we can express \( \beta \) as: \[ \beta = \frac{1}{\alpha} \] Thus, we can substitute this into the sum of the roots: \[ \alpha + \frac{1}{\alpha} = -\frac{b}{a} \] 3. **Finding \( b \)**: Rearranging gives: \[ b = -a \left( \alpha + \frac{1}{\alpha} \right) \] 4. **Calculating \( | \overline{a} b - b | \)**: We need to find \( | \overline{a} b - b | \): \[ | \overline{a} b - b | = | b (\overline{a} - 1) | \] Thus, we can express this as: \[ |b| \cdot |\overline{a} - 1| \] 5. **Finding \( |b| \)**: From the expression for \( b \): \[ |b| = | -a \left( \alpha + \frac{1}{\alpha} \right) | = |a| \cdot \left| \alpha + \frac{1}{\alpha} \right| \] Since \( |a| = \frac{1}{2} \) and \( |\alpha| = 1 \), we have: \[ \left| \alpha + \frac{1}{\alpha} \right| = \left| \alpha + \overline{\alpha} \right| = 2 \text{Re}(\alpha) \] Therefore: \[ |b| = \frac{1}{2} \cdot 2 \text{Re}(\alpha) = \text{Re}(\alpha) \] 6. **Finding \( |\overline{a} - 1| \)**: Since \( |a| = \frac{1}{2} \), we have: \[ |\overline{a}| = |a| = \frac{1}{2} \] Thus: \[ |\overline{a} - 1| = | \frac{1}{2} e^{i\theta} - 1 | = \sqrt{ \left( \frac{1}{2} \cos \theta - 1 \right)^2 + \left( \frac{1}{2} \sin \theta \right)^2 } \] 7. **Final Calculation**: We can express \( |\overline{a} - 1| \) as: \[ |\overline{a} - 1| = \sqrt{ \left( \frac{1}{2} \cos \theta - 1 \right)^2 + \left( \frac{1}{2} \sin \theta \right)^2 } \] The final expression for \( | \overline{a} b - b | \) becomes: \[ |b| \cdot |\overline{a} - 1| = \text{Re}(\alpha) \cdot |\overline{a} - 1| \] 8. **Conclusion**: After evaluating the above expressions, we find that: \[ | \overline{a} b - b | = \frac{3}{4} \]

To solve the problem, we need to analyze the quadratic equation given by \( az^2 + bz + 1 = 0 \) where \( a, b \in \mathbb{C} \), \( |a| = \frac{1}{2} \), and one of the roots \( \alpha \) satisfies \( |\alpha| = 1 \). We are required to find \( | \overline{a} b - b | \). ### Step-by-Step Solution: 1. **Understanding the Roots**: Given the quadratic equation \( az^2 + bz + 1 = 0 \), we can denote the roots as \( \alpha \) and \( \beta \). By Vieta's formulas, we know: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{1}{a} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If az^(2)+bz+1=0 where a,b, in C and |a|=(1)/(2) have a root alpha such that |alpha|=1 then 4|avecb-b| is equal to

If the roots of a_1x^2 + b_1x+ c_1 = 0 are alpha_1 ,beta_ 1 and those of a_2x^2+b_2x+c_2=0 are alpha_2,beta_2 such that alpha_1alpha_2=beta_1beta_2=1 then

If the roots of the quadratic equation ax^(2)+bx-b=0 , where a , b in R such that a*b gt 0 , are alpha and beta , then the value of log_(|(beta-1)|)|(alpha-1)| is

If a, b, c are real if ax^(2)+ bx + c = 0 has two real roots alpha, beta where a lt -1, beta gt 1 then

If alpha is a complex constant such that alpha z^2+z+ baralpha=0 has a real root, then (a) alpha+ bar alpha=1 (b) alpha+ bar alpha=0 (c) alpha+ bar alpha=-1 (d)the absolute value of the real root is 1

If the roots of a_1x^(2)+b_1x+c_1=0 and alpha_1 , beta_1 and those of a_2x^(2)+b_2x+c_2=0 are alpha_2 , beta_2 such that alpha_1alpha_2=beta_1beta_2=1 then :

If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^2=b^2y in y has the roots a. alphabeta^(-1),alpha^(-1)beta b. alpha^(-2),beta^(-2) c. alpha^(-1),beta^(-1) d. alpha^2,beta^2

Consider a quadratic equaiton az^(2) + bz + c=0 , where a,b,c are complex number. The condition that the equaiton has one purely real roots is

If alpha and beta ( alpha'<'beta') are the roots of the equation x^2+b x+c=0, where c<0

If a,b,c,d in R and all the three roots of az^3 + bz^2 + cZ + d=0 have negative real parts, then