Home
Class 12
MATHS
If z+1/z=2cos6^@ , then z^1000+1/[z^1000...

If `z+1/z=2cos6^@` , then `z^1000+1/[z^1000]` +1 is equal to

A

`0`

B

`1`

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( z + \frac{1}{z} = 2 \cos 6^\circ \) and find \( z^{1000} + \frac{1}{z^{1000}} + 1 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ z + \frac{1}{z} = 2 \cos 6^\circ \] We can multiply both sides by \( z \) to eliminate the fraction: \[ z^2 + 1 = 2 \cos 6^\circ z \] ### Step 2: Rearrange into standard quadratic form Rearranging gives us: \[ z^2 - 2 \cos 6^\circ z + 1 = 0 \] ### Step 3: Identify coefficients for the quadratic formula In the quadratic equation \( az^2 + bz + c = 0 \), we have: - \( a = 1 \) - \( b = -2 \cos 6^\circ \) - \( c = 1 \) ### Step 4: Apply the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ z = \frac{2 \cos 6^\circ \pm \sqrt{(2 \cos 6^\circ)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ (2 \cos 6^\circ)^2 - 4 = 4 \cos^2 6^\circ - 4 = 4(\cos^2 6^\circ - 1) = 4(-\sin^2 6^\circ) \] Thus, we have: \[ z = \frac{2 \cos 6^\circ \pm 2i \sin 6^\circ}{2} = \cos 6^\circ \pm i \sin 6^\circ \] This simplifies to: \[ z = e^{i 6^\circ} \quad \text{or} \quad z = e^{-i 6^\circ} \] ### Step 5: Calculate \( z^{1000} \) Now, we need to find \( z^{1000} \): \[ z^{1000} = (e^{i 6^\circ})^{1000} = e^{i 6000^\circ} \] We can reduce \( 6000^\circ \) by subtracting multiples of \( 360^\circ \): \[ 6000 \div 360 = 16.6667 \quad \text{(approximately 16 full cycles)} \] Calculating the remainder: \[ 6000 - 16 \times 360 = 6000 - 5760 = 240^\circ \] Thus, \[ z^{1000} = e^{i 240^\circ} \] ### Step 6: Calculate \( \frac{1}{z^{1000}} \) Similarly, \[ \frac{1}{z^{1000}} = e^{-i 240^\circ} \] ### Step 7: Add \( z^{1000} + \frac{1}{z^{1000}} \) Now we add: \[ z^{1000} + \frac{1}{z^{1000}} = e^{i 240^\circ} + e^{-i 240^\circ} = 2 \cos 240^\circ \] Using the cosine value: \[ \cos 240^\circ = -\frac{1}{2} \] Thus, \[ z^{1000} + \frac{1}{z^{1000}} = 2 \left(-\frac{1}{2}\right) = -1 \] ### Step 8: Final calculation Finally, we add 1: \[ z^{1000} + \frac{1}{z^{1000}} + 1 = -1 + 1 = 0 \] ### Conclusion The final answer is: \[ \boxed{0} \]

To solve the problem \( z + \frac{1}{z} = 2 \cos 6^\circ \) and find \( z^{1000} + \frac{1}{z^{1000}} + 1 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ z + \frac{1}{z} = 2 \cos 6^\circ \] We can multiply both sides by \( z \) to eliminate the fraction: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

z is a complex number such that z+1/z=2cos 3^0 ,then the value of z^(2000)+ 1/z^(2000) is equal to

If z+(1)/(z)+1=0, "then" z^(2003)+(1)/(z^(2003)) is equal to

If z 1 ​ and z 2 ​ are two non zero complex numbers such that ∣z 1 ​ +z 2 ​ ∣=∣z 1 ​ ∣+∣z 2 ​ ∣ then arg z 1 ​ -arg z 2 ​ is equal to

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If for the complex numbers z_1 and z_2 , |z_1+z_2|=|z_1-z_2| , then Arg(z_1)-Arg(z_2) is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z = 1 -cos theta+ isin theta then |z| is equal to

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If |z-1| =1 and arg (z)=theta , where z ne 0 and theta is acute, then (1-2/z) is equal to