Home
Class 12
MATHS
If |z|=1 and z ne +-1, then one of the p...

If `|z|=1` and `z ne +-1`, then one of the possible value of `arg(z)-arg(z+1)-arg(z-1)` , is

A

`-pi//6`

B

`pi//3`

C

`-pi//2`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find one possible value of the expression \( \arg(z) - \arg(z+1) - \arg(z-1) \) given that \( |z| = 1 \) and \( z \neq \pm 1 \). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \( |z| = 1 \), we can express \( z \) in its polar form as \( z = e^{i\theta} \) where \( \theta = \arg(z) \). 2. **Expressing \( z+1 \) and \( z-1 \)**: - \( z + 1 = e^{i\theta} + 1 \) - \( z - 1 = e^{i\theta} - 1 \) 3. **Using the Argument Property**: We can use the property of arguments: \[ \arg(a) + \arg(b) = \arg(ab) \] Therefore, \[ \arg(z) - \arg(z+1) - \arg(z-1) = \arg\left(\frac{z}{(z+1)(z-1)}\right) \] 4. **Calculating the Product**: \[ (z+1)(z-1) = z^2 - 1 \] Thus, we can rewrite the expression as: \[ \arg\left(\frac{z}{z^2 - 1}\right) \] 5. **Finding the Modulus**: Since \( |z| = 1 \), we have \( |z^2| = |z|^2 = 1 \). Therefore, \( |z^2 - 1| = |z^2 - 1| = |(z^2 - 1)| \). 6. **Simplifying the Argument**: We can express the argument as: \[ \arg(z) - \arg(z^2 - 1) = \arg(z) - \arg(z^2 - 1) \] Since \( z^2 - 1 = (z - 1)(z + 1) \), we can further simplify: \[ \arg(z^2 - 1) = \arg(z - 1) + \arg(z + 1) \] 7. **Final Expression**: Therefore, we have: \[ \arg(z) - \arg(z + 1) - \arg(z - 1) = \arg(z) - (\arg(z - 1) + \arg(z + 1)) \] 8. **Finding a Possible Value**: Since \( z \) lies on the unit circle and \( z \neq \pm 1 \), we can choose a specific value for \( z \) to find a possible value for the expression. For example, let \( z = i \) (which corresponds to \( \theta = \frac{\pi}{2} \)): - \( \arg(i) = \frac{\pi}{2} \) - \( z + 1 = i + 1 \) and \( z - 1 = i - 1 \) We can calculate: - \( \arg(z + 1) = \arg(i + 1) \) - \( \arg(z - 1) = \arg(i - 1) \) After calculating these arguments, we can find the value of \( \arg(z) - \arg(z + 1) - \arg(z - 1) \). ### Conclusion: After performing the calculations, we find that one possible value of \( \arg(z) - \arg(z + 1) - \arg(z - 1) \) is \( -\frac{\pi}{2} \).

To solve the problem, we need to find one possible value of the expression \( \arg(z) - \arg(z+1) - \arg(z-1) \) given that \( |z| = 1 \) and \( z \neq \pm 1 \). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \( |z| = 1 \), we can express \( z \) in its polar form as \( z = e^{i\theta} \) where \( \theta = \arg(z) \). 2. **Expressing \( z+1 \) and \( z-1 \)**: - \( z + 1 = e^{i\theta} + 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

For z= sqrt3-i , find the principal, value arg(z)

If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^n is

If |z|=2 and arg (z)=pi/4 , find z .

If arg(z_(1))=(2pi)/3 and arg(z_(2))=pi/2 , then find the principal value of arg(z_(1)z_(2)) and also find the quardrant of z_(1)z_(2) .

If arg z = pi/4 ,then

If arg(z) lt 0, then find arg(-z) -arg(z) .

Find the locus of z if arg ((z-1)/(z+1))= pi/4

For a non-zero complex number z , let arg(z) denote the principal argument with -pi lt arg(z)leq pi Then, which of the following statement(s) is (are) FALSE? arg(-1,-i)=pi/4, where i=sqrt(-1) (b) The function f: R->(-pi, pi], defined by f(t)=arg(-1+it) for all t in R , is continuous at all points of RR , where i=sqrt(-1) (c) For any two non-zero complex numbers z_1 and z_2 , arg((z_1)/(z_2))-arg(z_1)+arg(z_2) is an integer multiple of 2pi (d) For any three given distinct complex numbers z_1 , z_2 and z_3 , the locus of the point z satisfying the condition arg(((z-z_1)(z_2-z_3))/((z-z_3)(z_2-z_1)))=pi , lies on a straight line

Let z be any non-zero complex number. Then arg(z) + arg (barz) is equal to

If z_(1) and z_(2) are two of the 8^(th) roots of unity such that arg (z_(1)/z_(2)) is last positive, then z_(1)/z_(2) is