Home
Class 12
MATHS
If z=(1)/(2)(sqrt(3)-i), then the least ...

If `z=(1)/(2)(sqrt(3)-i)`, then the least possible integral value of `m` such that `(z^(101)+i^(109))^(106)=z^(m+1)` is

A

`11`

B

`7`

C

`8`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least possible integral value of \( m \) such that \[ (z^{101} + i^{109})^{106} = z^{m+1} \] where \( z = \frac{1}{2}(\sqrt{3} - i) \). ### Step 1: Simplifying \( z \) First, we can express \( z \) in a more manageable form. We multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{1}{2} \cdot \frac{\sqrt{3} + i}{(\sqrt{3} - i)(\sqrt{3} + i)} = \frac{\sqrt{3} + i}{2(3 + 1)} = \frac{\sqrt{3} + i}{8} \] Now, we can rewrite \( z \): \[ z = \frac{\sqrt{3}}{8} + \frac{1}{8}i \] ### Step 2: Finding \( z^{101} \) Next, we need to find \( z^{101} \). To do this, we can express \( z \) in polar form. The modulus \( r \) of \( z \) is given by: \[ r = |z| = \sqrt{\left(\frac{\sqrt{3}}{8}\right)^2 + \left(\frac{1}{8}\right)^2} = \sqrt{\frac{3}{64} + \frac{1}{64}} = \sqrt{\frac{4}{64}} = \frac{1}{4} \] The argument \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{1/8}{\sqrt{3}/8}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can express \( z \) in polar form as: \[ z = \frac{1}{4} \text{cis} \frac{\pi}{6} \] Now, we can find \( z^{101} \): \[ z^{101} = \left(\frac{1}{4}\right)^{101} \text{cis}\left(\frac{101\pi}{6}\right) = \frac{1}{4^{101}} \text{cis}\left(\frac{101\pi}{6}\right) \] ### Step 3: Simplifying \( i^{109} \) Next, we simplify \( i^{109} \): \[ i^{109} = i^{4 \cdot 27 + 1} = (i^4)^{27} \cdot i^1 = 1^{27} \cdot i = i \] ### Step 4: Combining \( z^{101} \) and \( i^{109} \) Now we combine \( z^{101} \) and \( i^{109} \): \[ z^{101} + i^{109} = \frac{1}{4^{101}} \text{cis}\left(\frac{101\pi}{6}\right) + i \] ### Step 5: Finding \( (z^{101} + i)^{106} \) Next, we need to compute \( (z^{101} + i)^{106} \). Since \( z^{101} \) is very small (as \( \frac{1}{4^{101}} \) is a very small number), we can approximate: \[ (z^{101} + i)^{106} \approx i^{106} = (i^4)^{26} \cdot i^2 = 1^{26} \cdot (-1) = -1 \] ### Step 6: Setting up the equation Now we set up the equation: \[ -1 = z^{m+1} \] ### Step 7: Finding \( m \) Since \( z = \frac{1}{4} \text{cis}\left(\frac{\pi}{6}\right) \), we can express \( z^{m+1} \): \[ z^{m+1} = \left(\frac{1}{4}\right)^{m+1} \text{cis}\left(\frac{(m+1)\pi}{6}\right) \] For \( z^{m+1} = -1 \), we need: 1. \( \left(\frac{1}{4}\right)^{m+1} = 1 \) implies \( m+1 = 0 \) or \( m = -1 \) (not possible since \( m \) must be integral). 2. The angle \( \frac{(m+1)\pi}{6} \) must equal \( \pi + 2k\pi \) for some integer \( k \). Thus: \[ \frac{(m+1)\pi}{6} = \pi + 2k\pi \implies m+1 = 6 + 12k \implies m = 5 + 12k \] The least integral value of \( m \) occurs when \( k = 0 \): \[ m = 5 \] ### Final Answer Thus, the least possible integral value of \( m \) is: \[ \boxed{5} \]

To solve the problem, we need to find the least possible integral value of \( m \) such that \[ (z^{101} + i^{109})^{106} = z^{m+1} \] where \( z = \frac{1}{2}(\sqrt{3} - i) \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=(1+i)/sqrt2 , then the value of z^1929 is

If |z +1| = z + 2(1 - i) , then the value of z

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

1. If |z-2+i| ≤ 2 then find the greatest and least value of | z|