Home
Class 12
MATHS
If y(1)=max||z-omega|-|z-omega^(2)||, wh...

If `y_(1)=max||z-omega|-|z-omega^(2)||`, where `|z|=2` and `y_(2)=max||z-omega|-|z-omega^(2)||`, where `|z|=(1)/(2)` and `omega` and `omega^(2)` are complex cube roots of unity, then

A

`y_(1)=sqrt(3)`, `y_(2)=sqrt(3)`

B

`y_(1) lt sqrt(3)`, `y_(2)=sqrt(3)`

C

`y_(1)=sqrt(3)`, `y_(2) lt sqrt(3)`

D

`y_(1) gt 3`, `y_(2) lt sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum values of the expressions given for \( y_1 \) and \( y_2 \) under the specified conditions. ### Step 1: Understanding the complex cube roots of unity The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \quad \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] These roots satisfy the equation \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step 2: Finding \( y_1 \) We need to calculate: \[ y_1 = \max ||z - \omega| - |z - \omega^2|| \] where \( |z| = 2 \). Using the triangle inequality: \[ ||z - \omega| - |z - \omega^2|| \leq |(\omega^2 - \omega)| \] Calculating \( |\omega^2 - \omega| \): \[ \omega^2 - \omega = \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) = -\sqrt{3} i \] Thus, \[ |\omega^2 - \omega| = \sqrt{3} \] So, we have: \[ ||z - \omega| - |z - \omega^2|| \leq \sqrt{3} \] To check if equality can be achieved, we can position \( z \) such that it is on the line connecting \( \omega \) and \( \omega^2 \). Therefore, \( y_1 = \sqrt{3} \). ### Step 3: Finding \( y_2 \) Now we calculate: \[ y_2 = \max ||z - \omega| - |z - \omega^2|| \] where \( |z| = \frac{1}{2} \). Using the triangle inequality again: \[ ||z - \omega| - |z - \omega^2|| \leq |\omega^2 - \omega| = \sqrt{3} \] However, since \( |z| = \frac{1}{2} \), we need to check if we can achieve this maximum. The maximum distance from \( z \) to \( \omega \) and \( \omega^2 \) will not reach \( \sqrt{3} \) because \( z \) is constrained to a smaller circle. Thus, we conclude: \[ y_2 < \sqrt{3} \] ### Final Conclusion From our calculations, we have: \[ y_1 = \sqrt{3} \quad \text{and} \quad y_2 < \sqrt{3} \]

To solve the problem, we need to find the maximum values of the expressions given for \( y_1 \) and \( y_2 \) under the specified conditions. ### Step 1: Understanding the complex cube roots of unity The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \quad \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] These roots satisfy the equation \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z + omega|^(2) = |z|^(2)+|omega|^(2) , where z and omega are complex numbers , then

Let S = { z: x = x+ iy, y ge 0,|z-z_(0)| le 1} , where |z_(0)|= |z_(0) - omega|= |z_(0) - omega^(2)|, omega and omega^(2) are non-real cube roots of unity. Then

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If |z-1|lt=2a n d|omegaz-1-omega^2|=a (where omega is a cube root of unity) , then complete set of values of a

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If z and w are two non-zero complex numbers such that z=-w.