Home
Class 12
MATHS
Least positive argument ofthe 4th root o...

Least positive argument ofthe 4th root ofthe complex number `2-isqrt(12)` is

A

`pi//6`

B

`5pi//12`

C

`7pi//12`

D

`11pi//12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least positive argument of the fourth root of the complex number \(2 - i\sqrt{12}\), we will follow these steps: ### Step 1: Rewrite the Complex Number We start with the complex number: \[ z = 2 - i\sqrt{12} \] We can simplify \(\sqrt{12}\) as: \[ \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \] Thus, we can rewrite \(z\) as: \[ z = 2 - 2i\sqrt{3} \] ### Step 2: Convert to Polar Form Next, we need to convert \(z\) into polar form. The modulus \(r\) of \(z\) is calculated as: \[ r = |z| = \sqrt{(2)^2 + (-2\sqrt{3})^2} = \sqrt{4 + 12} = \sqrt{16} = 4 \] Now, we find the argument \(\theta\): \[ \theta = \tan^{-1}\left(\frac{-2\sqrt{3}}{2}\right) = \tan^{-1}(-\sqrt{3}) \] The angle whose tangent is \(-\sqrt{3}\) is \(-\frac{\pi}{3}\). Since the complex number is in the fourth quadrant, we can express the argument as: \[ \theta = -\frac{\pi}{3} \] ### Step 3: Write in Polar Form Thus, we can express \(z\) in polar form: \[ z = 4 \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \] or using Euler's formula: \[ z = 4 e^{-i\frac{\pi}{3}} \] ### Step 4: Find the Fourth Root To find the fourth root of \(z\), we use the formula for the \(n\)-th root of a complex number: \[ z^{1/4} = r^{1/4} e^{i\frac{\theta + 2k\pi}{n}} \quad (k = 0, 1, 2, 3) \] Here, \(r = 4\), \(\theta = -\frac{\pi}{3}\), and \(n = 4\): \[ z^{1/4} = 4^{1/4} e^{i\frac{-\frac{\pi}{3} + 2k\pi}{4}} = \sqrt{2} e^{i\left(-\frac{\pi}{12} + \frac{k\pi}{2}\right)} \] ### Step 5: Calculate Arguments for \(k = 0, 1, 2, 3\) Now we calculate the arguments for \(k = 0, 1, 2, 3\): - For \(k = 0\): \[ \text{Argument} = -\frac{\pi}{12} \] - For \(k = 1\): \[ \text{Argument} = -\frac{\pi}{12} + \frac{\pi}{2} = -\frac{\pi}{12} + \frac{6\pi}{12} = \frac{5\pi}{12} \] - For \(k = 2\): \[ \text{Argument} = -\frac{\pi}{12} + \pi = -\frac{\pi}{12} + \frac{12\pi}{12} = \frac{11\pi}{12} \] - For \(k = 3\): \[ \text{Argument} = -\frac{\pi}{12} + \frac{3\pi}{2} = -\frac{\pi}{12} + \frac{18\pi}{12} = \frac{17\pi}{12} \] ### Step 6: Identify the Least Positive Argument The least positive argument among these values is: \[ \frac{5\pi}{12} \] ### Final Answer Thus, the least positive argument of the fourth root of the complex number \(2 - i\sqrt{12}\) is: \[ \boxed{\frac{5\pi}{12}} \]

To find the least positive argument of the fourth root of the complex number \(2 - i\sqrt{12}\), we will follow these steps: ### Step 1: Rewrite the Complex Number We start with the complex number: \[ z = 2 - i\sqrt{12} \] We can simplify \(\sqrt{12}\) as: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Least positive argument of the 4^(th) root of the complex number 2-isqrt12 is :

Find the square root of the complex number 18i

Find the square root of complex number -i .

Find the square root of the complex number 5+12i

Find the square root of the complex number -4-3i

The argument of the complex number (1 +i)^(4) is

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of each of the following complex number: -2-2isqrt(3)

Find the modulus and argument of each of the following complex number: -sqrt(3)-i

Find the modulus and argument of each of the following complex number: 2sqrt(3)-2i