Home
Class 12
MATHS
If z is a complex number satisfying the ...

If z is a complex number satisfying the equation `z^6 +z^3 + 1 = 0`. If this equation has a root `re^(itheta)` with `90^@<0<180^@` then the value of `theta` is

A

`100^(@)`

B

`110^(@)`

C

`160^(@)`

D

`170^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^6 + z^3 + 1 = 0 \) for a complex number \( z \) in the form \( re^{i\theta} \) where \( 90^\circ < \theta < 180^\circ \), we can follow these steps: ### Step 1: Substitute \( t = z^3 \) We start by substituting \( t = z^3 \) into the equation. This transforms the original equation into a quadratic equation: \[ t^2 + t + 1 = 0 \] ### Step 2: Solve the quadratic equation We can solve the quadratic equation using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \). Plugging in these values gives: \[ t = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ t = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 3: Identify the roots The two roots for \( t \) are: \[ t_1 = \frac{-1 + i\sqrt{3}}{2}, \quad t_2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 4: Convert \( t \) to polar form We will convert \( t_1 \) to polar form. The modulus \( r \) is calculated as: \[ r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] Next, we find the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) = 120^\circ \quad (\text{since } t_1 \text{ is in the second quadrant}) \] Thus, we can express \( t_1 \) as: \[ t_1 = e^{i \cdot 120^\circ} \] ### Step 5: Find \( z \) Since \( t = z^3 \), we have: \[ z^3 = e^{i \cdot 120^\circ} \] To find \( z \), we take the cube root: \[ z = e^{i \cdot \frac{120^\circ + 360^\circ n}{3}} \quad (n \in \mathbb{Z}) \] This simplifies to: \[ z = e^{i \cdot (40^\circ + 120^\circ n)} \] ### Step 6: Determine suitable \( n \) We need \( \theta \) such that \( 90^\circ < \theta < 180^\circ \). We can test values of \( n \): - For \( n = 0 \): \[ \theta = 40^\circ \] - For \( n = 1 \): \[ \theta = 40^\circ + 120^\circ = 160^\circ \] - For \( n = 2 \): \[ \theta = 40^\circ + 240^\circ = 280^\circ \quad (\text{not valid as it exceeds } 180^\circ) \] ### Conclusion The only valid solution for \( \theta \) that satisfies \( 90^\circ < \theta < 180^\circ \) is: \[ \theta = 160^\circ \] ### Final Answer The value of \( \theta \) is \( 160^\circ \).

To solve the equation \( z^6 + z^3 + 1 = 0 \) for a complex number \( z \) in the form \( re^{i\theta} \) where \( 90^\circ < \theta < 180^\circ \), we can follow these steps: ### Step 1: Substitute \( t = z^3 \) We start by substituting \( t = z^3 \) into the equation. This transforms the original equation into a quadratic equation: \[ t^2 + t + 1 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 = 0 , then the value of |z| is

If z is a complex number satisfying the relation |z+ 1|=z+2(1+i) , then z is

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0.

IF agt=1 , find all complex numbers z satisfying the equation z+a|z+1|+i=0

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

If z is a complex number satisfying z + z^-1 = 1 then z^n + z^-n , n in N , has the value