Home
Class 12
MATHS
Let P denotes a complex number z=r(costh...

Let `P` denotes a complex number `z=r(costheta+isintheta)` on the Argand's plane, and `Q` denotes a complex number `sqrt(2|z|^(2))(cos(theta+(pi)/(4))+isin(theta+(pi)/(4)))`. If `'O'` is the origin, then `DeltaOPQ` is

A

isosceles but not right angled

B

right angled but not isosceles

C

right isosceles

D

equilateral

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )`
`Z_(P)=r(costheta+isintheta)`
`Z_(0)=sqrt(2|z|^(2))(cos(theta+(pi)/(4))+isin(theta+(pi)/(4)))`
`=sqrt(2)r[cos(theta+(pi)/(4))+isin(theta+(pi)/(4))]`
From the figure,
`cos"(pi)/(4)=(2r^(2)+r^(2)-x^(2))/(2*sqrt(2r)*r)=(3r^(2)-x^(2))/(2sqrt(2)r^(2))`
`:.1=(3r^(2)-x^(2))/(2r^(2))`
`impliesr^(2)=x^(2)impliesx=rimplies` Triangle is right isosceles.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying |z+16|=4|z+1| . Then

If z is a complex number such taht z^2=( barz)^2, then find the location of z on the Argand plane.

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

If n_(1) denotes the maximum number of roots of sin theta = k_(1) in [0,2pi] and n_(2) denotes the maximum number of roots of cos theta=k_(2) in [0,2pi] , then

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Show that the area of the triangle on the Argand diagram formed by the complex numbers z, zi and z+ zi is =(1)/(2) |z|^(2)

If z be any complex number (z!=0) then arg((z-i)/(z+i))=pi/2 represents the curve

Let z=(costheta+isintheta)/(costheta-isintheta), pi/4 lt theta lt pi/2 . Then arg(z) =

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|