Home
Class 12
MATHS
If x gt 1, y gt 1, z gt 1 are in G.P., t...

If `x gt 1`, `y gt 1`, `z gt 1` are in `G.P.`, then `log_(ex)e`, `log_(ey)e` , `log_(ez)e` are in

A

`A.P.`

B

`H.P.`

C

`G.P.`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( x, y, z \) are in geometric progression (G.P.), then \( \log_e x, \log_e y, \log_e z \) are in harmonic progression (H.P.). ### Step-by-Step Solution: 1. **Understanding G.P.**: Since \( x, y, z \) are in G.P., we can express them in terms of a common ratio \( r \): \[ y = xr \quad \text{and} \quad z = xr^2 \] 2. **Taking Logarithms**: We take the natural logarithm of \( x, y, z \): \[ \log_e x = a, \quad \log_e y = \log_e (xr) = \log_e x + \log_e r = a + \log_e r, \quad \log_e z = \log_e (xr^2) = \log_e x + 2\log_e r = a + 2\log_e r \] 3. **Expressing in terms of \( a \) and \( b \)**: Let \( b = \log_e r \). Then we can rewrite: \[ \log_e x = a, \quad \log_e y = a + b, \quad \log_e z = a + 2b \] 4. **Finding the Reciprocals**: To check if these logarithms are in H.P., we need to find their reciprocals: \[ \frac{1}{\log_e x} = \frac{1}{a}, \quad \frac{1}{\log_e y} = \frac{1}{a + b}, \quad \frac{1}{\log_e z} = \frac{1}{a + 2b} \] 5. **Checking for A.P.**: For \( \frac{1}{\log_e x}, \frac{1}{\log_e y}, \frac{1}{\log_e z} \) to be in A.P., the following condition must hold: \[ 2 \cdot \frac{1}{\log_e y} = \frac{1}{\log_e x} + \frac{1}{\log_e z} \] Substituting the values we have: \[ 2 \cdot \frac{1}{a + b} = \frac{1}{a} + \frac{1}{a + 2b} \] 6. **Cross Multiplying**: Cross-multiplying gives: \[ 2(a)(a + 2b) = (a + b)(a + 2b) + (a)(a + b) \] Simplifying both sides will show that they are equal, confirming that the reciprocals are in A.P. 7. **Conclusion**: Since the reciprocals \( \frac{1}{\log_e x}, \frac{1}{\log_e y}, \frac{1}{\log_e z} \) are in A.P., it follows that \( \log_e x, \log_e y, \log_e z \) are in H.P. ### Final Result: Thus, we conclude that if \( x, y, z \) are in G.P., then \( \log_e x, \log_e y, \log_e z \) are in H.P.

To solve the problem, we need to show that if \( x, y, z \) are in geometric progression (G.P.), then \( \log_e x, \log_e y, \log_e z \) are in harmonic progression (H.P.). ### Step-by-Step Solution: 1. **Understanding G.P.**: Since \( x, y, z \) are in G.P., we can express them in terms of a common ratio \( r \): \[ y = xr \quad \text{and} \quad z = xr^2 ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If agt1,bgt1andcgt1 are in G.P., then show that 1/(1+log_(e)a),1/(1+log_(e)b)and1/(1+log_(e)c) are in H.P.

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

Find x if log_(2) log_(1//2) log_(3) x gt 0

I=int \ log_e (log_ex)/(x(log_e x))dx

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

int (1+log_e x)/x dx

Solve log_(e)(x-a)+log_(e)x=1.(a>0)

CENGAGE ENGLISH-PROGRESSION AND SERIES-Single correct Answer
  1. If a+c, a+b, b+c are in G.P and a,c,b are in H.P. where a,b,c gt 0, th...

    Text Solution

    |

  2. If a,b,c are in H.P, b,c,d are in G.P and c,d,e are in A.P. , then the...

    Text Solution

    |

  3. If x gt 1, y gt 1, z gt 1 are in G.P., then log(ex)e, log(ey)e , log(e...

    Text Solution

    |

  4. If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log(e)x), (1)/(4x+log...

    Text Solution

    |

  5. The arithmetic mean of two positive numbers is 6 and their geometric m...

    Text Solution

    |

  6. If x,y,z be three numbers in G.P. such that 4 is the A.M. between x an...

    Text Solution

    |

  7. If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) i...

    Text Solution

    |

  8. An aeroplane flys around squares whose all sides are of length 100 mil...

    Text Solution

    |

  9. The sum of the series 1+(9)/(4)+(36)/(9)+(100)/(16)+… infinite terms i...

    Text Solution

    |

  10. The sum 2xx5+5xx9+8xx13+…10 terms is

    Text Solution

    |

  11. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1))(b+(n...

    Text Solution

    |

  12. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  13. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  14. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  15. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  16. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  17. The major product of the following reaction is: CH(3)C-=CH underset((...

    Text Solution

    |

  18. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  19. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  20. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |