Home
Class 12
MATHS
sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(...

`sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k))` is equal to (where `|a| gt 1`)

A

`(a-1)^(-3)`

B

`(3)/(a-1)`

C

`(3)/(a^(3)-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the triple summation: \[ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}} \] where \( |a| > 1 \). ### Step 1: Rewrite the summation We can rewrite the term \(\frac{1}{a^{i+j+k}}\) as follows: \[ \frac{1}{a^{i+j+k}} = \frac{1}{a^i} \cdot \frac{1}{a^j} \cdot \frac{1}{a^k} \] Thus, we can express the triple summation as: \[ \sum_{i=1}^{\infty} \frac{1}{a^i} \sum_{j=1}^{\infty} \frac{1}{a^j} \sum_{k=1}^{\infty} \frac{1}{a^k} \] ### Step 2: Evaluate each summation Each of these summations is a geometric series. The general form of a geometric series is: \[ \sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r} \] For our case, we start from \(n=1\), so we have: \[ \sum_{i=1}^{\infty} \frac{1}{a^i} = \frac{\frac{1}{a}}{1 - \frac{1}{a}} = \frac{1/a}{(a-1)/a} = \frac{1}{a-1} \] Similarly, we have: \[ \sum_{j=1}^{\infty} \frac{1}{a^j} = \frac{1}{a-1} \] \[ \sum_{k=1}^{\infty} \frac{1}{a^k} = \frac{1}{a-1} \] ### Step 3: Combine the results Now we can combine the results of the three summations: \[ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}} = \left(\frac{1}{a-1}\right) \cdot \left(\frac{1}{a-1}\right) \cdot \left(\frac{1}{a-1}\right) = \frac{1}{(a-1)^3} \] ### Final Result Thus, the value of the triple summation is: \[ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}} = \frac{1}{(a-1)^3} \]

To solve the problem, we need to evaluate the triple summation: \[ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}} \] where \( |a| > 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

sum _(r = 2) ^(oo) (1)/(r ^(2) - 1) is equal to :

sum_(n=1) ^(oo) (1)/((2n-1)!)=

The value of sum_(i=0)^oosum_(j=0)^oosum_(k=0)^oo1/(3^i3^j3^k) is

sum_(n=1)^(oo) (2n)/(n!)=

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

CENGAGE ENGLISH-PROGRESSION AND SERIES-Single correct Answer
  1. The sum 2xx5+5xx9+8xx13+…10 terms is

    Text Solution

    |

  2. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1))(b+(n...

    Text Solution

    |

  3. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  4. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  5. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  6. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  7. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  8. The major product of the following reaction is: CH(3)C-=CH underset((...

    Text Solution

    |

  9. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  10. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  11. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |

  12. If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n equal to

    Text Solution

    |

  13. The sequence {x(k)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1)=(1)/(2...

    Text Solution

    |

  14. The absolute value of the sum of first 20 terms of series, if S(n)=(n+...

    Text Solution

    |

  15. If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!), then S(50...

    Text Solution

    |

  16. If S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, t...

    Text Solution

    |

  17. There is a certain sequence of positive real numbers. Beginning from t...

    Text Solution

    |

  18. The sequence {x(1),x(2),…x(50)} has the property that for each k, x(k)...

    Text Solution

    |

  19. Let a(0)=0 and a(n)=3a(n-1)+1 for n ge 1. Then the remainder obtained ...

    Text Solution

    |

  20. Suppose a(1),a(2),a(3),….,a(2012) are integers arranged on a circle. E...

    Text Solution

    |