Home
Class 12
MATHS
If the sum to infinty of the series , 1+...

If the sum to infinty of the series , `1+4x+7x^(2)+10x^(3)+….`, is `(35)/(16)`, where `|x| lt 1`, then `'x'` equals to

A

`19//7`

B

`1//5`

C

`1//4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the sum to infinity of the series \( 1 + 4x + 7x^2 + 10x^3 + \ldots \) equals \( \frac{35}{16} \), where \( |x| < 1 \). ### Step-by-Step Solution: 1. **Identify the Series**: The given series is \( 1 + 4x + 7x^2 + 10x^3 + \ldots \). The coefficients \( 1, 4, 7, 10 \) form an arithmetic progression (AP) with the first term \( a = 1 \) and common difference \( d = 3 \). 2. **General Term of the Series**: The \( n \)-th term of the series can be expressed as: \[ T_n = (1 + 3(n-1))x^{n-1} = (3n - 2)x^{n-1} \] 3. **Sum of the Series**: The sum \( S \) of the series can be written as: \[ S = \sum_{n=1}^{\infty} (3n - 2)x^{n-1} \] This can be split into two separate sums: \[ S = 3\sum_{n=1}^{\infty} nx^{n-1} - 2\sum_{n=1}^{\infty} x^{n-1} \] 4. **Using the Formula for the Sums**: The sum \( \sum_{n=1}^{\infty} nx^{n-1} \) is given by: \[ \sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2} \] The sum \( \sum_{n=1}^{\infty} x^{n-1} \) is: \[ \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x} \] 5. **Substituting the Sums**: Substituting these results into the expression for \( S \): \[ S = 3 \cdot \frac{1}{(1-x)^2} - 2 \cdot \frac{1}{1-x} \] 6. **Finding a Common Denominator**: The common denominator is \( (1-x)^2 \): \[ S = \frac{3}{(1-x)^2} - \frac{2(1-x)}{(1-x)^2} = \frac{3 - 2(1-x)}{(1-x)^2} \] Simplifying the numerator: \[ S = \frac{3 - 2 + 2x}{(1-x)^2} = \frac{1 + 2x}{(1-x)^2} \] 7. **Setting the Sum Equal to \( \frac{35}{16} \)**: We set the expression for \( S \) equal to \( \frac{35}{16} \): \[ \frac{1 + 2x}{(1-x)^2} = \frac{35}{16} \] 8. **Cross-Multiplying**: Cross-multiplying gives: \[ 16(1 + 2x) = 35(1 - 2x + x^2) \] 9. **Expanding and Rearranging**: Expanding both sides: \[ 16 + 32x = 35 - 70x + 35x^2 \] Rearranging gives: \[ 35x^2 - 102x + 19 = 0 \] 10. **Using the Quadratic Formula**: Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{102 \pm \sqrt{(-102)^2 - 4 \cdot 35 \cdot 19}}{2 \cdot 35} \] Calculating the discriminant: \[ = \frac{102 \pm \sqrt{10404 - 2660}}{70} = \frac{102 \pm \sqrt{7744}}{70} = \frac{102 \pm 88}{70} \] Thus, we have two potential solutions: \[ x = \frac{190}{70} = \frac{19}{7} \quad \text{and} \quad x = \frac{14}{70} = \frac{1}{5} \] 11. **Selecting the Valid Solution**: Since \( |x| < 1 \), we discard \( \frac{19}{7} \) (as it is greater than 1) and accept: \[ x = \frac{1}{5} \] ### Final Answer: Thus, the value of \( x \) is \( \frac{1}{5} \).

To solve the problem, we need to find the value of \( x \) such that the sum to infinity of the series \( 1 + 4x + 7x^2 + 10x^3 + \ldots \) equals \( \frac{35}{16} \), where \( |x| < 1 \). ### Step-by-Step Solution: 1. **Identify the Series**: The given series is \( 1 + 4x + 7x^2 + 10x^3 + \ldots \). The coefficients \( 1, 4, 7, 10 \) form an arithmetic progression (AP) with the first term \( a = 1 \) and common difference \( d = 3 \). 2. **General Term of the Series**: ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Sum up to n terms the series 1+ 2x + 3x^(2) + 4x^(3) + ...

If the sum to infinity of the series 1 + 4x + 7x^2 + 10x^3 +............. is 35/16 then x= (A) 1/5 (B) 2/5 (C) 3/7 (D) 1/7

Sum up to n terms the series 1+3x+5x^(2)+7x^(3)+...

Find the sum to ininity of the series 1-3x+5x^2+7x^3+..... oo when Ix| <1.

Let S denotes the infinite sum 2 + 5x + 9x^(2) + 14x^(3) + 2x^(4) + … where |x| lt 1 . Then S equals

In the sum to infinity of the series 3+(3+x) (1)/(4) + (3+2x)(1)/(4^(2))+ ..... "is" (44)/(9) find x.

Find the sum of the series 1-3x+5x^2-7x^3+ ton terms.

The sum of n terms of the series (1)/(1 + x) + (2)/(1 + x^(2)) + (4)/(1 + x^(4)) + ……… is

Find the coefficient of x in the expansion of (1 - 3x + 7x^(2)) (1 - x)^(16) .

Find the sum of the series x(x+y)+x^2(x^2+y^2)+x^3(x^3+y^3)+……to infinity where |x|lt1 and |y|lt1.

CENGAGE ENGLISH-PROGRESSION AND SERIES-Single correct Answer
  1. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1))(b+(n...

    Text Solution

    |

  2. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  3. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  4. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  5. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  6. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  7. The major product of the following reaction is: CH(3)C-=CH underset((...

    Text Solution

    |

  8. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  9. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  10. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |

  11. If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n equal to

    Text Solution

    |

  12. The sequence {x(k)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1)=(1)/(2...

    Text Solution

    |

  13. The absolute value of the sum of first 20 terms of series, if S(n)=(n+...

    Text Solution

    |

  14. If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!), then S(50...

    Text Solution

    |

  15. If S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, t...

    Text Solution

    |

  16. There is a certain sequence of positive real numbers. Beginning from t...

    Text Solution

    |

  17. The sequence {x(1),x(2),…x(50)} has the property that for each k, x(k)...

    Text Solution

    |

  18. Let a(0)=0 and a(n)=3a(n-1)+1 for n ge 1. Then the remainder obtained ...

    Text Solution

    |

  19. Suppose a(1),a(2),a(3),….,a(2012) are integers arranged on a circle. E...

    Text Solution

    |

  20. The sum of the series (9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3...

    Text Solution

    |