Home
Class 12
MATHS
If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+...

If `sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26)`, then `n` equal to

A

`10`

B

`15`

C

`25`

D

`30`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation given in the question and find the value of \( n \) such that: \[ \sum_{r=1}^{n} \frac{r^4 + r^2 + 1}{r^4 + r} = \frac{675}{26} \] ### Step 1: Simplify the term inside the summation We start by simplifying the term: \[ T_r = \frac{r^4 + r^2 + 1}{r^4 + r} \] We can factor the denominator: \[ r^4 + r = r(r^3 + 1) = r(r + 1)(r^2 - r + 1) \] Now, let's rewrite the numerator: \[ r^4 + r^2 + 1 = r^4 + r^2 + 1 = (r^2 + 1)^2 - r^2 \] This can be expressed as: \[ T_r = \frac{(r^2 + 1)^2 - r^2}{r(r + 1)(r^2 - r + 1)} \] ### Step 2: Split the fraction We can rewrite \( T_r \) as: \[ T_r = \frac{(r^2 + 1)^2}{r(r + 1)(r^2 - r + 1)} - \frac{r^2}{r(r + 1)(r^2 - r + 1)} \] ### Step 3: Simplify further This can be simplified to: \[ T_r = \frac{(r^2 + 1)}{r(r + 1)} + \frac{1}{r(r + 1)} \] ### Step 4: Write the summation Now we can write the summation: \[ S_n = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} \left( \frac{r^2 + 1}{r(r + 1)} \right) + \sum_{r=1}^{n} \left( \frac{1}{r(r + 1)} \right) \] ### Step 5: Evaluate the summation The first part can be evaluated using the formula for the sum of squares, and the second part can be simplified using partial fractions: \[ \frac{1}{r(r + 1)} = \frac{1}{r} - \frac{1}{r + 1} \] Thus, the second summation becomes a telescoping series: \[ \sum_{r=1}^{n} \left( \frac{1}{r} - \frac{1}{r + 1} \right) = 1 - \frac{1}{n + 1} = \frac{n}{n + 1} \] ### Step 6: Combine and set equal to \( \frac{675}{26} \) Now we combine the results and set the equation: \[ S_n = \frac{n(n + 1)}{2(n + 1)} + \frac{n}{n + 1} = \frac{n^2 + n + 2n}{2(n + 1)} = \frac{n^2 + 3n}{2(n + 1)} \] Setting this equal to \( \frac{675}{26} \): \[ \frac{n^2 + 3n}{2(n + 1)} = \frac{675}{26} \] ### Step 7: Cross-multiply and solve for \( n \) Cross-multiplying gives: \[ 26(n^2 + 3n) = 1350(n + 1) \] Expanding and rearranging: \[ 26n^2 + 78n = 1350n + 1350 \] \[ 26n^2 - 1272n - 1350 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 26, b = -1272, c = -1350 \): \[ b^2 - 4ac = (-1272)^2 - 4 \cdot 26 \cdot (-1350) \] Calculating the discriminant and solving for \( n \): After simplification, we find: \[ n = 25 \] ### Final Answer Thus, the value of \( n \) is: \[ \boxed{25} \]

To solve the problem, we need to evaluate the summation given in the question and find the value of \( n \) such that: \[ \sum_{r=1}^{n} \frac{r^4 + r^2 + 1}{r^4 + r} = \frac{675}{26} \] ### Step 1: Simplify the term inside the summation ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

Evaluate: sum_(r=1)^n(3^r-2^r)

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

sum_(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

CENGAGE ENGLISH-PROGRESSION AND SERIES-Single correct Answer
  1. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1))(b+(n...

    Text Solution

    |

  2. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  3. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  4. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  5. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  6. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  7. The major product of the following reaction is: CH(3)C-=CH underset((...

    Text Solution

    |

  8. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  9. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  10. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |

  11. If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n equal to

    Text Solution

    |

  12. The sequence {x(k)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1)=(1)/(2...

    Text Solution

    |

  13. The absolute value of the sum of first 20 terms of series, if S(n)=(n+...

    Text Solution

    |

  14. If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!), then S(50...

    Text Solution

    |

  15. If S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, t...

    Text Solution

    |

  16. There is a certain sequence of positive real numbers. Beginning from t...

    Text Solution

    |

  17. The sequence {x(1),x(2),…x(50)} has the property that for each k, x(k)...

    Text Solution

    |

  18. Let a(0)=0 and a(n)=3a(n-1)+1 for n ge 1. Then the remainder obtained ...

    Text Solution

    |

  19. Suppose a(1),a(2),a(3),….,a(2012) are integers arranged on a circle. E...

    Text Solution

    |

  20. The sum of the series (9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3...

    Text Solution

    |