Home
Class 12
MATHS
The sequence {x(k)} is defined by x(k+1)...

The sequence `{x_(k)}` is defined by `x_(k+1)=x_(k)^(2)+x_(k)` and `x_(1)=(1)/(2)`. Then `[(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)]` (where `[.]` denotes the greatest integer function) is equal to

A

`0`

B

`2`

C

`4`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the sequence defined by \( x_{k+1} = x_k^2 + x_k \) with the initial condition \( x_1 = \frac{1}{2} \). We need to compute the sum \( \left\lfloor \frac{1}{x_1 + 1} + \frac{1}{x_2 + 1} + \cdots + \frac{1}{x_{100} + 1} \right\rfloor \). ### Step 1: Calculate the first few terms of the sequence 1. **Calculate \( x_1 \)**: \[ x_1 = \frac{1}{2} \] 2. **Calculate \( x_2 \)**: \[ x_2 = x_1^2 + x_1 = \left(\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \] 3. **Calculate \( x_3 \)**: \[ x_3 = x_2^2 + x_2 = \left(\frac{3}{4}\right)^2 + \frac{3}{4} = \frac{9}{16} + \frac{12}{16} = \frac{21}{16} \] 4. **Calculate \( x_4 \)**: \[ x_4 = x_3^2 + x_3 = \left(\frac{21}{16}\right)^2 + \frac{21}{16} = \frac{441}{256} + \frac{336}{256} = \frac{777}{256} \] 5. **Calculate \( x_5 \)**: \[ x_5 = x_4^2 + x_4 = \left(\frac{777}{256}\right)^2 + \frac{777}{256} = \frac{604929}{65536} + \frac{199488}{65536} = \frac{804417}{65536} \] ### Step 2: Calculate \( \frac{1}{x_k + 1} \) for the first few terms 1. **Calculate \( \frac{1}{x_1 + 1} \)**: \[ \frac{1}{x_1 + 1} = \frac{1}{\frac{1}{2} + 1} = \frac{1}{\frac{3}{2}} = \frac{2}{3} \] 2. **Calculate \( \frac{1}{x_2 + 1} \)**: \[ \frac{1}{x_2 + 1} = \frac{1}{\frac{3}{4} + 1} = \frac{1}{\frac{7}{4}} = \frac{4}{7} \] 3. **Calculate \( \frac{1}{x_3 + 1} \)**: \[ \frac{1}{x_3 + 1} = \frac{1}{\frac{21}{16} + 1} = \frac{1}{\frac{37}{16}} = \frac{16}{37} \] 4. **Calculate \( \frac{1}{x_4 + 1} \)**: \[ \frac{1}{x_4 + 1} = \frac{1}{\frac{777}{256} + 1} = \frac{1}{\frac{1033}{256}} = \frac{256}{1033} \] 5. **Calculate \( \frac{1}{x_5 + 1} \)**: \[ \frac{1}{x_5 + 1} = \frac{1}{\frac{804417}{65536} + 1} = \frac{65536}{804417 + 65536} = \frac{65536}{869953} \] ### Step 3: Sum the first few terms Now we can sum these values: \[ S = \frac{2}{3} + \frac{4}{7} + \frac{16}{37} + \frac{256}{1033} + \frac{65536}{869953} + \cdots \] ### Step 4: Estimate the total sum The values of \( \frac{1}{x_k + 1} \) decrease rapidly as \( k \) increases. The first few terms contribute significantly to the sum, while the later terms contribute very little. Calculating the approximate values: - \( \frac{2}{3} \approx 0.6667 \) - \( \frac{4}{7} \approx 0.5714 \) - \( \frac{16}{37} \approx 0.4324 \) - \( \frac{256}{1033} \approx 0.2473 \) - \( \frac{65536}{869953} \approx 0.0754 \) Adding these: \[ S \approx 0.6667 + 0.5714 + 0.4324 + 0.2473 + 0.0754 \approx 1.9932 \] ### Step 5: Apply the greatest integer function Finally, we apply the greatest integer function: \[ \left\lfloor S \right\rfloor = \left\lfloor 1.9932 \right\rfloor = 1 \] ### Final Answer Thus, the answer is: \[ \boxed{1} \]

To solve the problem step by step, we will analyze the sequence defined by \( x_{k+1} = x_k^2 + x_k \) with the initial condition \( x_1 = \frac{1}{2} \). We need to compute the sum \( \left\lfloor \frac{1}{x_1 + 1} + \frac{1}{x_2 + 1} + \cdots + \frac{1}{x_{100} + 1} \right\rfloor \). ### Step 1: Calculate the first few terms of the sequence 1. **Calculate \( x_1 \)**: \[ x_1 = \frac{1}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|66 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise EXERCIESE ( MATRIX MATCH TYPE )|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE )|8 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If x^(2)=k+1 , then (x^(4)-1)/(x^(2)+1) =

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2) - (1)/(x+k) , then find k ?

If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k then k=

Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1) -1) x -2 (2 ^(k)-1), then k =

If inte^(x)/(x^(n))dx and -e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1) , then (k_(2)-k_(1)) is equal to:

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

CENGAGE ENGLISH-PROGRESSION AND SERIES-Single correct Answer
  1. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1))(b+(n...

    Text Solution

    |

  2. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  3. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  4. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  5. The value of sum(i-1)^nsum(j=1)^isum(k=1)^j1=220 , then the value of n...

    Text Solution

    |

  6. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  7. The major product of the following reaction is: CH(3)C-=CH underset((...

    Text Solution

    |

  8. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  9. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  10. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |

  11. If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n equal to

    Text Solution

    |

  12. The sequence {x(k)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1)=(1)/(2...

    Text Solution

    |

  13. The absolute value of the sum of first 20 terms of series, if S(n)=(n+...

    Text Solution

    |

  14. If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!), then S(50...

    Text Solution

    |

  15. If S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, t...

    Text Solution

    |

  16. There is a certain sequence of positive real numbers. Beginning from t...

    Text Solution

    |

  17. The sequence {x(1),x(2),…x(50)} has the property that for each k, x(k)...

    Text Solution

    |

  18. Let a(0)=0 and a(n)=3a(n-1)+1 for n ge 1. Then the remainder obtained ...

    Text Solution

    |

  19. Suppose a(1),a(2),a(3),….,a(2012) are integers arranged on a circle. E...

    Text Solution

    |

  20. The sum of the series (9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3...

    Text Solution

    |