Home
Class 12
MATHS
If the value of prod(k=1)^(50)[{:(1,2k-1...

If the value of `prod_(k=1)^(50)[{:(1,2k-1),(0,1):}]` is equal to `[{:(1,r),(0,1):}]` then `r` is equal to

A

`62500`

B

`2500`

C

`1250`

D

`12500`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product of matrices from \( k = 1 \) to \( k = 50 \) and find the value of \( r \) in the resulting matrix. The matrices are given in the form: \[ \begin{pmatrix} 1 & 2k - 1 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Understand the Matrix Multiplication When we multiply two matrices of the form: \[ A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \] The product \( AB \) is: \[ AB = \begin{pmatrix} 1 \cdot 1 + a \cdot 0 & 1 \cdot b + a \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot b + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & a + b \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate the Product for k = 1 to 50 For \( k = 1 \) to \( k = 50 \), the matrices are: \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, \ldots, \begin{pmatrix} 1 & 99 \\ 0 & 1 \end{pmatrix} \] The second element in each matrix is \( 2k - 1 \) for \( k = 1, 2, \ldots, 50 \). ### Step 3: Sum the Second Elements When we multiply all these matrices together, the resulting matrix will have the form: \[ \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix} \] where \( S \) is the sum of all the second elements: \[ S = (1) + (3) + (5) + \ldots + (99) \] This is an arithmetic series where: - The first term \( a = 1 \) - The last term \( l = 99 \) - The number of terms \( n = 50 \) The sum of an arithmetic series is given by: \[ S = \frac{n}{2} (a + l) = \frac{50}{2} (1 + 99) = 25 \cdot 100 = 2500 \] ### Step 4: Write the Final Result Thus, the resulting matrix after multiplying all 50 matrices is: \[ \begin{pmatrix} 1 & 2500 \\ 0 & 1 \end{pmatrix} \] This means that \( r = 2500 \). ### Conclusion The value of \( r \) is: \[ \boxed{2500} \]

To solve the problem, we need to evaluate the product of matrices from \( k = 1 \) to \( k = 50 \) and find the value of \( r \) in the resulting matrix. The matrices are given in the form: \[ \begin{pmatrix} 1 & 2k - 1 \\ 0 & 1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and B=[{:(a^(2),ab,ac),(ab,b^(2),...

    Text Solution

    |

  2. If the value of prod(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r...

    Text Solution

    |

  3. A square matrix P satisfies P^(2)=I-P, where I is identity matrix. If ...

    Text Solution

    |

  4. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  5. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  6. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  7. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(2):}]. If AB ...

    Text Solution

    |

  8. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  9. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  10. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  11. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  12. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  13. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  14. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  15. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  16. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  17. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  18. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  19. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  20. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |