Home
Class 12
MATHS
If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:...

If `A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):})`, then `A=`

A

`({:(1,0,0),(0,1,0),(0,0,-2):})`

B

`({:(0,1,0),(1,0,0),(0,0,1):})`

C

`({:(1,0,0),(1,0,0),(0,0,-2):})`

D

`({:(0,1,0),(1,0,0),(0,0,-2):})`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) such that: \[ A \cdot \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 5 \\ 1 & 3 & 4 \\ 4 & -8 & 6 \end{pmatrix} \] ### Step 1: Identify the transformation between the matrices We notice that the rows of the resulting matrix on the right side can be obtained from the rows of the matrix on the left side through some operations. Specifically, we can observe that: - The first row of the result (3, -1, 5) corresponds to the second row of the original matrix (3, -1, 5). - The second row of the result (1, 3, 4) corresponds to the first row of the original matrix (1, 3, 4). - The third row of the result (4, -8, 6) can be obtained by multiplying the third row of the original matrix (-2, 4, -3) by -2. ### Step 2: Determine the row operations From the observations, we can summarize the operations as follows: - Interchange the first and second rows. - Multiply the third row by -2. ### Step 3: Construct the transformation matrix \( A \) To perform these operations using a transformation matrix \( A \), we need to create a matrix that reflects these row operations. The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, we will modify \( I \) to reflect our row operations: 1. Interchange rows 1 and 2. 2. Multiply row 3 by -2. This gives us: \[ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] ### Step 4: Write the final answer Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \]

To solve the problem, we need to find the matrix \( A \) such that: \[ A \cdot \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 5 \\ 1 & 3 & 4 \\ 4 & -8 & 6 \end{pmatrix} \] ### Step 1: Identify the transformation between the matrices ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

Simplify : 3{:[(-2,3),(1,5),(-4,3)]:}-2{:[(3,-1),(2,1),(-4,6)]:}

If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Determine the matrix A, when A=4[{:(1,2,3),(-1,-2,-3),(4,2,6):}]+2[{:(5,4,1),(3,2,4),(3,8,2):}]

FindA, if [{:(4),(1),(3):}]A=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If C= [{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}] Then trace of C+C^(3)+C^(5)+……+C^(99) is

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  4. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(2):}]. If AB ...

    Text Solution

    |

  5. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  6. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  7. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  8. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  9. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  10. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  11. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  12. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  13. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  14. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  15. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  16. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  17. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  18. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  19. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  20. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |