Home
Class 12
MATHS
Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] a...

Let `A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}]` and `B=[{:(x),(y),(2):}]`. If `AB` is a scalar multiple of `B`, then the value of `x+y` is

A

`-1`

B

`-2`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y \) given that the product of matrices \( A \) and \( B \) is a scalar multiple of \( B \). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} \] 2. **Calculate the product \( AB \)**: \[ AB = A \cdot B = \begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} \] Performing the matrix multiplication: - First row: \[ -5x - 8y - 14 \] - Second row: \[ 3x + 5y + 8 \] - Third row: \[ 2x + 3y + 6 \] Thus, we have: \[ AB = \begin{pmatrix} -5x - 8y - 14 \\ 3x + 5y + 8 \\ 2x + 3y + 6 \end{pmatrix} \] 3. **Set up the equation**: Since \( AB \) is a scalar multiple of \( B \), we can write: \[ AB = \lambda B = \lambda \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} \] This gives us the following equations: - From the first row: \[ -5x - 8y - 14 = \lambda x \quad (1) \] - From the second row: \[ 3x + 5y + 8 = \lambda y \quad (2) \] - From the third row: \[ 2x + 3y + 6 = 2\lambda \quad (3) \] 4. **Rearranging the equations**: Rearranging each equation gives: - Equation (1): \[ \lambda x + 5x + 8y + 14 = 0 \quad (4) \] - Equation (2): \[ \lambda y - 3x - 5y - 8 = 0 \quad (5) \] - Equation (3): \[ 2\lambda - 2x - 3y - 6 = 0 \quad (6) \] 5. **Add equations (4), (5), and (6)**: Adding all three equations: \[ (\lambda x + 5x + 8y + 14) + (\lambda y - 3x - 5y - 8) + (2\lambda - 2x - 3y - 6) = 0 \] This simplifies to: \[ 0 = \lambda(x + y + 2) \] 6. **Conclusion**: Since \( \lambda \) is a non-zero scalar, we have: \[ x + y + 2 = 0 \implies x + y = -2 \] ### Final Answer: The value of \( x + y \) is \( -2 \).

To solve the problem, we need to find the value of \( x + y \) given that the product of matrices \( A \) and \( B \) is a scalar multiple of \( B \). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} -5 & -8 & -7 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(-3,-7,-5),(2,4,3),(1,2,2):}] and B=[{:(a),(b),(1):}] If AB is a scalar multiple of B, then (a) 4a+7b+5=0 (b) a+b+2=0 (c) b-a=4 (d) a+3b=0

Let A=[{:(x^(2),6,8),(3,y^(2),9),(4,5,z^(2)):}],B=[{:(2x,3,5),(2,2y,6),(1,4,2z-3):}] . If trace A = trace B, then x+y+z is equal to ________

A and B are 2 events such that P(A)=(3)/(4) and P(B)=(5)/(8) . If x and y are the possible minimum and maximum values of P(AnnB) , then the value of a+b is

If 17x -5y=8 and 14 x -7y =-7, what is the value of 3x + 2y ?

If x : y = 4 : 7 , find the value of (3x + 2y) : (5x + y) .

Let A = {x : x is a multiple of 3} and B = {x : x is a multiple of 5), then A nn B is given by

Let 2x + 3y = 4 and 5x + 6y = 7 . What is the value of 8x + 9y ?

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  2. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  3. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(2):}]. If AB ...

    Text Solution

    |

  4. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  5. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  6. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  7. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  8. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  9. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  10. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  11. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  12. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  13. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  14. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  15. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  16. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  17. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  18. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  19. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  20. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |