Home
Class 12
MATHS
A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in...

`A=[{:(a,b),(b,-a):}]` and `MA=A^(2m)`, `m in N` for some matrix `M`, then which one of the following is correct ?

A

`M=[{:(a^(2m),b^(2m)),(b^(2m),-a^(2m)):}]`

B

`M=(a^(2)+b^(2))^(m)[{:(1,0),(0,1):}]`

C

`M=(a^(m)+b^(m))[{:(1,0),(0,1):}]`

D

`M=(a^(2)+b^(2))^(m-1)[{:(a,b),(b,-a):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and the equation \( MA = A^{2m} \) where \( m \in \mathbb{N} \). The matrix \( A \) is defined as: \[ A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \] ### Step 1: Find \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \cdot \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \] Calculating the product: \[ A^2 = \begin{pmatrix} a^2 + b^2 & ab - ab \\ ab - ab & b^2 + a^2 \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{pmatrix} \] Thus, we can express \( A^2 \) as: \[ A^2 = (a^2 + b^2) I \] where \( I \) is the identity matrix. ### Step 2: Find \( A^{2m} \) Using the result from Step 1, we can find \( A^{2m} \): \[ A^{2m} = (A^2)^m = ((a^2 + b^2) I)^m = (a^2 + b^2)^m I \] ### Step 3: Use the given equation \( MA = A^{2m} \) We have: \[ MA = A^{2m} = (a^2 + b^2)^m I \] ### Step 4: Post-multiply by \( A^{-1} \) To isolate \( M \), we post-multiply by \( A^{-1} \): \[ MA A^{-1} = (a^2 + b^2)^m I A^{-1} \] Since \( AA^{-1} = I \), we simplify to: \[ M = (a^2 + b^2)^m A^{-1} \] ### Step 5: Find \( A^{-1} \) To find \( A^{-1} \), we use the formula for the inverse of a 2x2 matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] First, we calculate the determinant of \( A \): \[ \text{det}(A) = a(-a) - b(b) = -a^2 - b^2 = -(a^2 + b^2) \] Now, the adjugate of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} \] Thus, we have: \[ A^{-1} = \frac{1}{-(a^2 + b^2)} \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} \] ### Step 6: Substitute \( A^{-1} \) back into the equation for \( M \) Now substituting \( A^{-1} \) into the equation for \( M \): \[ M = (a^2 + b^2)^m \cdot \frac{1}{a^2 + b^2} \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} \] This simplifies to: \[ M = (a^2 + b^2)^{m-1} \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} \] ### Conclusion Thus, the correct expression for \( M \) is: \[ M = (a^2 + b^2)^{m-1} \begin{pmatrix} -a & -b \\ -b & a \end{pmatrix} \]

To solve the problem, we need to analyze the given matrix \( A \) and the equation \( MA = A^{2m} \) where \( m \in \mathbb{N} \). The matrix \( A \) is defined as: \[ A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \] ### Step 1: Find \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If M and N are orthogonal matrices of order 3, then which of the following is (are) orthogonal matrix?

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?

Let A be a symmetric matrix, then A^(m), m in N is a

Let m and N be two 3x3 matrices such that MN=NM. Further if M!=N^2 and M^2=N^4 then which of the following are correct.

Let A=Z , the set of integers. Let R_(1)={(m,n)epsilonZxxZ:(m+4n) is divisible by 5 in Z} . Let R_(2)={(m,n)epsilonZxxZ:(m+9n) is divisible by 5 in Z} . Which one of the following is correct?

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

The value of 'spin only' magnetic moment for one of the following configuration is 2.84B.M. The correct one is:

The value of 'spin only' magnetic moment for one of the following configuration is 2.84B.M. The correct one is:

Find whether the following statements are true or false. If the statement is false, then write its correct statement: (i) If P={m,n} and Q={n,m},then PxxQ={(m,n),(n,m)} . (ii) If A and B are non-empty sets, then AxxB is a non-empty set of the ordered pairs (x,y) such that x in A and y in B .

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  2. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(2):}]. If AB ...

    Text Solution

    |

  3. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  4. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  5. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  6. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  7. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  8. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  9. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  10. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  11. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  14. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  15. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  16. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  17. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  18. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  19. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  20. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |