Home
Class 12
MATHS
The number of 2xx2 matrices A, that are ...

The number of `2xx2` matrices `A`, that are there with the elements as real numbers satisfying `A+A^(T)=I` and `A A^(T)=I` is

A

zero

B

one

C

two

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of \(2 \times 2\) matrices \(A\) with real number elements that satisfy the equations \(A + A^T = I\) and \(AA^T = I\). Let's denote the matrix \(A\) as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 1: Use the first equation \(A + A^T = I\) The transpose of \(A\) is: \[ A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] Now we can add \(A\) and \(A^T\): \[ A + A^T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix} \] Setting this equal to the identity matrix \(I\): \[ \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] From this, we can derive the following equations: 1. \(2a = 1\) → \(a = \frac{1}{2}\) 2. \(b + c = 0\) → \(c = -b\) 3. \(2d = 1\) → \(d = \frac{1}{2}\) ### Step 2: Substitute values into the matrix Now substituting \(a\) and \(d\) into the matrix \(A\): \[ A = \begin{pmatrix} \frac{1}{2} & b \\ -b & \frac{1}{2} \end{pmatrix} \] ### Step 3: Use the second equation \(AA^T = I\) Now we need to check the second condition \(AA^T = I\): Calculating \(AA^T\): \[ A A^T = \begin{pmatrix} \frac{1}{2} & b \\ -b & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -b \\ b & \frac{1}{2} \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} \frac{1}{4} + b^2 & -\frac{1}{2}b + \frac{1}{2}b \\ -\frac{1}{2}b + \frac{1}{2}b & b^2 + \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} + b^2 & 0 \\ 0 & b^2 + \frac{1}{4} \end{pmatrix} \] Setting this equal to the identity matrix \(I\): \[ \begin{pmatrix} \frac{1}{4} + b^2 & 0 \\ 0 & b^2 + \frac{1}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] From this, we derive: 1. \(\frac{1}{4} + b^2 = 1\) → \(b^2 = 1 - \frac{1}{4} = \frac{3}{4}\) 2. \(b^2 + \frac{1}{4} = 1\) → \(b^2 = 1 - \frac{1}{4} = \frac{3}{4}\) (this is consistent) ### Step 4: Solve for \(b\) From \(b^2 = \frac{3}{4}\): \[ b = \pm \frac{\sqrt{3}}{2} \] ### Step 5: Determine the matrices Now substituting back for \(b\): 1. If \(b = \frac{\sqrt{3}}{2}\): \[ A_1 = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \] 2. If \(b = -\frac{\sqrt{3}}{2}\): \[ A_2 = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \] ### Conclusion Thus, the number of \(2 \times 2\) matrices \(A\) that satisfy both conditions is **2**.

To solve the problem, we need to find the number of \(2 \times 2\) matrices \(A\) with real number elements that satisfy the equations \(A + A^T = I\) and \(AA^T = I\). Let's denote the matrix \(A\) as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Find the number of matrices having 12 elements

The number of matrices having 7 elements is……………

The number of 2xx2 matrices A with real entries, such that A+A^(T)=3I and A A^(T)=5I , is equal to

The number of distinct pairs (x,y) of the real number satisfying x=x^(3)+y^(4)and y=2xy is :

Let A,B,C be 2xx2 matrices with entries from the set of real numbers. Define operations \'*\' as follows A*B=1/2(AB+BA) then (A) A*I=A (B) A*A=A^2 (C) A*B=B*A (D) A*(B+C)=A*B+A*C

The number of matrices X with entries {0,2,3} for which the sum of all the principal diagonal elements of X.X^(T) is 28 (where X^(T) is the transpose matrix of X), is

The number of all possible matrices of order 2xx3 with each entry 1 or -1 is (i) 32 (ii) 12 (iii) 6 (iv) 64

The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s2x2u n i tm a t r i x) is 1 (b) 2 (c) 3 (d) infinite

Find the real numbers x,y such that ( iy+ x)(3+2i) = 1+ i

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  2. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  3. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  4. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  5. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  6. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  7. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  8. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  9. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  10. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  11. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  13. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  14. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  15. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  16. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  17. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  18. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  19. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  20. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |