Home
Class 12
MATHS
Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2)...

Let matrix `A=[{:(x,y,-z),(1,2,3),(1,1,2):}]` , where `x,y,z in N`. If `|adj(adj(adj(adjA)))|=4^(8)*5^(16)`, then the number of such `(x,y,z)` are

A

`28`

B

`36`

C

`45`

D

`55`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understanding the Matrix and its Determinant Given the matrix \( A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \), we need to find the determinant of this matrix. ### Step 2: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = x(2 \cdot 2 - 3 \cdot 1) - y(1 \cdot 2 - 3 \cdot 1) + (-z)(1 \cdot 1 - 2 \cdot 1) \] Calculating the terms: - \( 2 \cdot 2 - 3 \cdot 1 = 4 - 3 = 1 \) - \( 1 \cdot 2 - 3 \cdot 1 = 2 - 3 = -1 \) - \( 1 \cdot 1 - 2 \cdot 1 = 1 - 2 = -1 \) Thus, we have: \[ \text{det}(A) = x(1) - y(-1) - z(-1) = x + y + z \] ### Step 3: Setting Up the Equation From the problem, we know that: \[ | \text{adj(adj(adj(adj(A))))} | = 4^8 \cdot 5^{16} \] Using the property of determinants of adjoint matrices, we have: \[ | \text{adj}(A) | = |A|^{n-1} \] where \( n \) is the order of the matrix (which is 3). Therefore: \[ | \text{adj}(A) | = |A|^{2} \] Continuing this process for four adjoints: \[ | \text{adj(adj(adj(adj(A))))} | = |A|^{16} \] Setting this equal to the given expression: \[ |A|^{16} = 4^8 \cdot 5^{16} \] ### Step 4: Simplifying the Equation We can rewrite \( 4^8 \) as \( (2^2)^8 = 2^{16} \): \[ |A|^{16} = 2^{16} \cdot 5^{16} \] Taking the 16th root of both sides: \[ |A| = 2 \cdot 5 = 10 \] ### Step 5: Setting Up the Equation for x, y, z We have: \[ x + y + z = 10 \] where \( x, y, z \) are natural numbers. ### Step 6: Finding the Number of Solutions The number of natural number solutions to the equation \( x + y + z = 10 \) can be found using the stars and bars combinatorial method. The formula for the number of solutions in natural numbers is given by: \[ \text{Number of solutions} = (n - 1) \choose (k - 1) \] where \( n \) is the sum (10) and \( k \) is the number of variables (3): \[ \text{Number of solutions} = (10 - 1) \choose (3 - 1) = 9 \choose 2 \] Calculating \( 9 \choose 2 \): \[ 9 \choose 2 = \frac{9 \cdot 8}{2 \cdot 1} = 36 \] ### Final Answer Thus, the number of such \( (x, y, z) \) is **36**.

To solve the problem, we will follow these steps: ### Step 1: Understanding the Matrix and its Determinant Given the matrix \( A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} \), we need to find the determinant of this matrix. ### Step 2: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

Let matrix A=[[x,y,-z],[1,2,3],[1,1,2]] where x,y,zepsilonN . If det.(adj(adj.A))=2^8.(3^4) then the number of such matrices A is :

A, B and C are three square matrices of order 3 such that A= diag (x, y, z) , det (B)=4 and det (C)=2 , where x, y, z in I^(+) . If det (adj (adj (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28 , then (adj A) A equals :

If A=[[1,2,3],[1,3,4],[1,4,3]] ,verify that A(adj.A)=(adj.A)=|A|.I

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^(-1)+y^(-1)+z^(-1) is

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  2. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  3. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  4. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  5. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  6. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  7. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  8. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  9. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  11. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  13. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  14. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  15. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  16. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  17. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  18. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying (I-0.4A)^(-1)=I-alphaA where I...

    Text Solution

    |

  20. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |