Home
Class 12
MATHS
If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , ...

If `A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}]` , then the trace of the matrix `Adj(AdjA)` is

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the trace of the matrix \( \text{Adj}(\text{Adj}(A)) \), we will follow these steps: ### Step 1: Define the matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 3, b = -3, c = 4 \) - \( d = 2, e = -3, f = 4 \) - \( g = 0, h = -1, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 3((-3)(1) - (4)(-1)) - (-3)((2)(1) - (4)(0)) + 4((2)(-1) - (-3)(0)) \] \[ = 3(-3 + 4) + 3(2) + 4(-2) \] \[ = 3(1) + 6 - 8 \] \[ = 3 + 6 - 8 = 1 \] ### Step 3: Find \( \text{Adj}(\text{Adj}(A)) \) The property of the adjoint states that: \[ \text{Adj}(\text{Adj}(A)) = \text{det}(A)^{n-2} A \] where \( n \) is the order of the matrix. For our \( 3 \times 3 \) matrix, \( n = 3 \). Thus, \[ \text{Adj}(\text{Adj}(A)) = \text{det}(A)^{3-2} A = \text{det}(A) A = 1 \cdot A = A \] ### Step 4: Calculate the trace of \( \text{Adj}(\text{Adj}(A)) \) The trace of a matrix is the sum of its diagonal elements. Therefore, we compute the trace of \( A \): \[ \text{Trace}(A) = 3 + (-3) + 1 = 1 \] ### Conclusion The trace of the matrix \( \text{Adj}(\text{Adj}(A)) \) is: \[ \text{Trace}(\text{Adj}(\text{Adj}(A))) = 1 \]

To find the trace of the matrix \( \text{Adj}(\text{Adj}(A)) \), we will follow these steps: ### Step 1: Define the matrix \( A \) Given the matrix: \[ A = \begin{pmatrix} 3 & -3 & 4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

If A[{:(2,4,4),(2,5,4),(2,5,3):}] , then verify that A adjA = |A|l. Also find A^(-1) .

If A=|{:(1,4,5),(3,2,6),(0,1,0):}| , then evaluate A. (adj. A).

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A=[{:(,1,3,3),(,1,4,3),(,1,3,4):}] then verify that A adj A=|A| I. Also find A^(-1)

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  2. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  3. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  4. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  5. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  6. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  7. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  8. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  9. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  11. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  13. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  14. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  15. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  16. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  17. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  18. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying (I-0.4A)^(-1)=I-alphaA where I...

    Text Solution

    |

  20. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |