Home
Class 12
MATHS
If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and...

If `A=[{:(1,-1,1),(0,2,-3),(2,1,0):}]` and `B=(adjA)` and `C=5A`, then find the value of `(|adjB|)/(|C |)`

A

`25`

B

`2`

C

`1`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{|\text{adj} B|}{|C|}\), where \(A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{pmatrix}\), \(B = \text{adj} A\), and \(C = 5A\). ### Step 1: Calculate the Determinant of Matrix A First, we need to find the determinant of matrix \(A\). \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{pmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}\). Substituting the values: \[ |A| = 1(2 \cdot 0 - (-3) \cdot 1) - (-1)(0 \cdot 0 - (-3) \cdot 2) + 1(0 \cdot 1 - 2 \cdot 2) \] Calculating each term: 1. \(1(0 + 3) = 3\) 2. \(-(-1)(0 + 6) = 6\) 3. \(1(0 - 4) = -4\) So, \[ |A| = 3 + 6 - 4 = 5 \] ### Step 2: Calculate the Determinant of Matrix C Now, we find the determinant of \(C\): \[ C = 5A \] Using the property of determinants, \(|kA| = k^n |A|\), where \(n\) is the order of the matrix (in this case, \(n = 3\)): \[ |C| = 5^3 |A| = 125 \cdot 5 = 625 \] ### Step 3: Calculate the Determinant of Matrix B Next, we need to find \(|\text{adj} A|\). The property of the adjoint states that: \[ |\text{adj} A| = |A|^{n-1} \] For our \(3 \times 3\) matrix, \(n = 3\): \[ |\text{adj} A| = |A|^{3-1} = |A|^2 = 5^2 = 25 \] ### Step 4: Calculate the Value of \(\frac{|\text{adj} B|}{|C|}\) Now we can find \(\frac{|\text{adj} B|}{|C|}\): \[ \frac{|\text{adj} B|}{|C|} = \frac{|\text{adj} A|}{|C|} = \frac{25}{625} = \frac{1}{25} = 1 \] ### Final Answer Thus, the value of \(\frac{|\text{adj} B|}{|C|}\) is \(1\).

To solve the problem, we need to find the value of \(\frac{|\text{adj} B|}{|C|}\), where \(A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{pmatrix}\), \(B = \text{adj} A\), and \(C = 5A\). ### Step 1: Calculate the Determinant of Matrix A First, we need to find the determinant of matrix \(A\). \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise JEE Advanced (Single Correct Answer Type)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then the value of (a+b+c)^(2) is

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(2 ,3,-5 ),(1, 2,-1)] and B=[(0, 5,1),(-2, 7, 3)] , find A+B and A-B

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

CENGAGE ENGLISH-MATRICES-Single correct Answer
  1. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  2. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  3. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  4. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  5. Let A and B be two non-singular matrices such that A ne I, B^(2) = I...

    Text Solution

    |

  6. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  7. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  8. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  9. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  11. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  13. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  14. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  15. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  16. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  17. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  18. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying (I-0.4A)^(-1)=I-alphaA where I...

    Text Solution

    |

  20. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |