Home
Class 12
MATHS
The probability that sin^(-1)(sinx)+cos^...

The probability that `sin^(-1)(sinx)+cos^(-1)(cosy)` is an integer `x,y in {1,2,3,4}` is

A

`(1)/(16)`

B

`(3)/(16)`

C

`(15)/(16)`

D

`(14)/(16)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` For expression `sin^(-1)(sinx)+cos^(-1)(cosy)` to be an integer, `x` should lie between `[-(pi)/(2),(pi)/(2)]` and `y` should lie between `[0,pi]`
`x=1` and `y=1,2,3`
`:.` Required probability `=(3)/(16)`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|13 Videos
  • PROBABILITY

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE ENGLISH|Exercise Sovled Examples|22 Videos
  • PROBABILITY I

    CENGAGE ENGLISH|Exercise JEE Advanced|7 Videos

Similar Questions

Explore conceptually related problems

dy/dx = (1-sinx)/(1+cosy)

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

Prove that, (sin (x/2)-cos (x/2))^(2)=1-sinx

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

intsqrt(1+cos e cx)dx e q u a l s 2sin^(-1)sqrt(sinx)+c (b) sqrt(2)cos^(-1)sqrt(cosx)+c c-2sin^(-1)(1-2sinx) cos^(-1)(1-2sinx)+c

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)