Home
Class 12
MATHS
Solve (2^(x)-1)(3^(x)-9)(sinx-cosx)(5^(x...

Solve `(2^(x)-1)(3^(x)-9)(sinx-cosx)(5^(x)-1)lt0, -pi//2 lt x lt 2pi`.

Text Solution

AI Generated Solution

To solve the inequality \((2^{x} - 1)(3^{x} - 9)(\sin x - \cos x)(5^{x} - 1) < 0\) for the interval \(-\frac{\pi}{2} < x < 2\pi\), we will follow these steps: ### Step 1: Identify the critical points We need to find the values of \(x\) where each factor in the inequality equals zero. 1. **For \(2^{x} - 1 = 0\):** \[ 2^{x} = 1 \implies x = 0 ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Solve x(2^x-1)(3^x-9)^5(x-3)<0.

Solve x^2-x-1 lt 0

If 0 lt x lt pi/2 then

Differentiate the following function with respect to x : sin^(-1){(sinx+cosx)/(sqrt(2))} , -(3pi)/4 lt xlt pi/4

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

If 0 lt x lt pi /2 then

Solve: 5lt=(2-3x)/4lt=9

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Solve x^(2)-x-1 lt 0 .