Home
Class 12
MATHS
For 2 lt x lt 4 find the values of |x|....

For `2 lt x lt 4` find the values of |x|.
(ii) For `-3 le x le -1`, find the values of |x|.
(iii) For `-3 le x lt 1,` find the values of |x|
(iv) For `-5 lt x lt 7 ` find the values of |x-2|
(v) For `1 le x le 5` find fthe values of |2x -7|

Text Solution

Verified by Experts

(i) `2 lt x lt 4`
i.e., values on real number line whose distance from zero lies between 2 and 4.
Here values of x are positive `implies|x| in (2,4)`
(ii) `-3 le x le -1`
Here values on real number line whose distance from zero lies between 1 and 3 or equal to 1 or 3.
`implies 1 le |x| le 3`
(iii) ` -3 le x lt 1`
For `-3 le x lt 0, |x| in (0,3]`
For ` 0 le x lt 1, |x| in [0,1)`
So for `-3 le x lt 1,|x| in [0,1)cup(0,3]" or " |x| in [0,3]`
(iv) `-5 lt x lt 7`
or `-7 lt x-2 lt 5`
`implies 0 le |x-2| le 7`
(v) `1 le x le 5`
or `2 le2x le10`
`implies -5 le 2x-7 le 3`
`implies |2x-7| in[0,5]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

For 2ltxlt4 , find the value of |x|dot For -3lt=xlt=-1 , find the value of |x|dot For -3lt=x<1 , find the value of |x|dot For -5ltxlt7 , find the value of |x-2|dot For 1lt=xlt=5 , find the value of |2x-7|dot

If |x^2-7|le 9 then find the values of x

2 le 3x - 4 le 5 find x

If -2le3x-7le8 , find x.

Find the value of x^(2) for the given values of x. (i) x lt 3 (ii) x gt -1 (iii) x ge 2 (iv) x lt -1

Find tha values of x^2 for the given values of x. (i) x lt 2 (ii) x gt -1 (iii) x ge 2 (iv) x lt -1

The number of intergal values of x if 5x -1 lt (x+1)^2 lt 7 x-3 is

If 2 le |x| le 5 , then find the values of x from the graph of y = |x| .

Use real number line to find the range of values of x for which : -1 lt x le 6 and -2 le x le 3 .

Use real number line to find the range of values of x for which : x lt 0 and -3 le x lt 1 .