Home
Class 12
MATHS
Find the possible values of sqrt(|x|-2) ...

Find the possible values of `sqrt(|x|-2)` (ii) `sqrt(3-|x-1|)` (iii) `sqrt(4-sqrt(x^2))`

Text Solution

Verified by Experts

(i) `sqrt(|x|-2) `
We know that square roots are defined for non-negative values only.
It implies that we must have ` |x|-2 ge 0`. Thus,
`sqrt(|x|-2) ge 0`
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| ge 0`
But the maximum value of `3-|x-1|` is 3, when `|x-1|` is 0.
Hence, for `sqrt(3-|x-1|)` to get defined, ` 0 le 3-|x-1|le 3`.
Thus,
`sqrt(3-|x-1|) in [0, sqrt(3)]`
Alternatively, ` |x-1| ge 0`
`implies -|x-1| le 0`
`implies 3-|x-1| le 3`
But for `sqrt(3-|x-1|)` to get defined, we must have
`0 le 3 -|x-1| le3`
`implies 0 le sqrt(3-|x-1|) le sqrt(3)`
(iii) `sqrt(4-sqrt(x^(2)))=sqrt(4-|x|)`
`|x| ge 0`
`implies -|x| le 0`
`implies4-|x| le 4`
But for `sqrt(4-|x|)` to get defined `0 le 4 -|x| le 4`
` :. 0 le sqrt(4-|x|) le 2`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of sqrt(|x|-2) .

Find all the possible values of the expression sqrt(x^2-4) .

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Find the value of :- (i) (1)/(sqrt(4)) (ii) (1)/(sqrt(16)) (iii) (1)/(sqrt(64))

Find all possible values of the following expressions : (i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)

Find the domain of each of the following real valued functions of real variable: f(x)=sqrt(x-2) (ii) f(x)=1/(sqrt(x^2-1)) (iii) f(x)=sqrt(9-x^2) (iv) f(x)=sqrt((x-2)/(3-x))

Find all the possible the value of the following expression dot sqrt(x^2-4) (ii) sqrt(9-x^2) (iii) sqrt(x^2-2x+10)

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

Find the value of sqrt((x+2sqrt((x-1)))]+sqrt((x-2sqrt((x-1)))] =

If sqrt(2)=1.414,sqrt(3)=1.732 , find the value of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)" "(ii)(sqrt(3)-1)/(sqrt(3)+1)" "(iii)(2+sqrt(6))/(sqrt(2))