Home
Class 12
MATHS
If f(x) ={(x^(3)", " x lt1),(2x-1...

If ` f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).`

Text Solution

AI Generated Solution

To find \( (f - g)(x) \), we need to evaluate the functions \( f(x) \) and \( g(x) \) based on the given piecewise definitions, and then subtract \( g(x) \) from \( f(x) \) for each interval. ### Step-by-Step Solution: 1. **Define the Functions**: - The function \( f(x) \) is defined as: \[ f(x) = ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):} and g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):} . Describe the function f//g and find its domain.

Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):} and g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):} . Describe the function f//g and find its domain.

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?

f(x){{:(x^(3) - 1"," if x le 1 ),(x^(2) "," if x gt 1 ):}

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.