Home
Class 12
MATHS
Let x= in (0,pi/2)dot Then find the doma...

Let `x= in (0,pi/2)dot` Then find the domain of the function `f(x)=1/(-(log)_(sinx)tanx)`

Text Solution

Verified by Experts

Here, `x in (0,(pi)/(2))`
or `0 lt sinx lt 1 " " ` (1)
and we know `{(log_(a) x lt b, implies ,x gt a^(b)", if "0lt a lt 1),(,,x lt a^(b)", if " a gt 1):}} " " `(2)
Thus, `f(x)=(1)/(sqrt(-log_(sinx)tan x)) " exists if " -log_(sinx) (tanx) gt 0`
or `log_(sinx)tanx lt 0 " " `[ As inequality changes sign on multiplying by -ve]
or ` tanx gt (sinx)^(0) " " `[ Using (1) and (2) ]
or `tanx gt 1`
or `x in ((pi)/(4),(pi)/(2)) " "["As " x in (0,(pi)/(2))]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Domain of the function f(x)=(1)/(log(2-x)) is

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)