Home
Class 12
MATHS
Solve [cot^(-1) x] + [cos^(-1) x] =0, wh...

Solve `[cot^(-1) x] + [cos^(-1) x] =0`, where `[.]` denotes the greatest integer function

Text Solution

Verified by Experts

We have `[cos^(-1)x] ge 0 AA x in [-1,1]`
and `[cot^(-1)x] ge 0 AA x in R`
Hence, `[cos^(-1)x]+[cot^(-1)x]=0`
only if `[cos^(-1)x]=[cot^(-1)x]=0`
`[cos^(-1)x]=0impliesx in (cos 1,1]`
`[cot^(-1)x]=0impliesx in (cot 1,oo)`
` :. x in (cot 1,1]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (cos1,1) (b) cos1,cos1) (cot1,1) (d) none of these

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (a) (cos1,1) (b) cos1,cos1) (c) (cot1,1] (d) none of these

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to: