Home
Class 12
MATHS
If f: RvecRvecR are two given functions,...

If `f: RvecRvecR` are two given functions, then prove that `2m indot{if(x)-g(x),0}=f(x)-|g(x)-f(x)|`

Text Solution

Verified by Experts

`h(x)= 2 min. {f(x)-g(x),0}`
`={(0",",f(x) gt g(x)),(2{f(x)-g(x)}",",f(x) leg(x)):}`
`={(f(x)-g(x)-|f(x)-g(x)|",",f(x) gt g(x)),(f(x)-g(x)-|f(x)-g(x)",",f(x) leg(x)):}`
` :. h(x)=f(x)-g(x)-|g(x)-f(x)|`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f: RrarrR and g:RrarrR are two given functions, then prove that 2min.{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

If f(x) =x^(2)andg(x)=2x+1 are two real valued function, then evaluate : (f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)

If f(x) is a twice differentiable function such that f'' (x) =-f(x),f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

If f(x)a n dg(f) are two differentiable functions and g(x)!=0 , then show trht (f(x))/(g(x)) is also differentiable d/(dx){(f(x))/(g(x))}=(g(x)d/x{f(x)}-g(x)d/x{g(x)})/([g(x)]^2)