Home
Class 12
MATHS
Which of the following function is (are)...

Which of the following function is (are) even, odd, or neither? (a). `f(x)=x^2sinx` (b). `f(x)=log((1-x)/(1+x))` (c). `f(x)=log(x+sqrt(1+x^2))` (d). `f(x)=(e^x+e^(-x))/2`

Text Solution

Verified by Experts

(i) `f(-x)=(-x)^(2) sin(-x)= -x^(2)sinx= -f(x)`
Hence, f(x) is odd.
(ii) `f(-x)=sqrt(1+(-x)+(-x)^(2))-sqrt(1-(-x)+(-x)^(2)) `
`=sqrt(1-x+x^(2))-sqrt(1+x+x^(2))`
`= -f(x)`
Hence, f(x) is odd.
(iii) `f(-x)=log{(1-(-x))/(1+(-x))}`
` log((1+x)/(1-x))`
`= -f(x)`
Hence, f(x) is odd.
(iv) `f(-x)=log(-x+sqrt(1+(-x)^(2)))`
`=log{((-x+sqrt(1+x^(2)))(x+sqrt(1+x^(2))))/((x+sqrt(1+x^(2))))}`
`log((1)/(x+sqrt(1+x^(2))))= -f(x)`
Hence, f(x) is odd.
(v) `f(-x)=sin(-x)-cos(-x)= -sinx-cosx`
Clearly, `f(-x) ne f(x) " and " f(-x) ne -f(x).`
Hence, f(x) is neither even nor odd.
(vi) `f(-x)=(e^(-x)+e^(-(-x)))/(2)=(e^(-x)+e^(x))/(2)=f(x)`
Hence, f(x) is even.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Which of the following functions is (are) even, odd or neither: f(x)=(e^(x)+e^(-x))/2

Which of the following functions is (are) even, odd or neither: f(x)=log((1-x)/(1+x))

Which of the following functions is (are) even, odd or neither: f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Find whether the following functions are even or odd or none f(x) = log(x+sqrt(1+x^2))

Determine whether the following functions are even or odd or neither even nor odd: f(x)=(x^(2)-1)|x|

Identify the following functions whether odd or even or neither: f(x)=log((x^4+x^2+1)/(x^2+x+1))

Identify the given functions as odd, even or neither: f(x)=x/(e^(x)-1)+x/2+1

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

f(x)=sqrt(log((3x-x^(2))/(x-1)))

Determine whether the function is even, odd or niether even or odd. (a) f(x)=5-x^(2) (b) f(x)=|-x| (c ) f(x)=[x] (d) f(x)=|x-2| (e) f(x)=-x|x|