Home
Class 12
MATHS
Find the period of the following functi...

Find the period of the following functions
(i) ` f(x)=|sin 3x|`
(ii) `f(x)=2"cosec"(5x-6)+7`
(iii) ` f(x) =x-[x-2.6],` where [.] represents the greatest integer function.

Text Solution

Verified by Experts

(i) Period of ` |sinx| " is " pi`.
So, the period of `|sin 3x| " is " (pi)/(3)`
(ii) Period of `2 "cosec"(5x-6)+7 " is " (2pi)/(5)`
(iii) `f(x) =x-[x-2.6]`
`=(x-2.6)-[x-2.6]+2.6`
`={x-2.6}+2.6,` where {.} represents fractional part function.
` :. ` Period of f(x) is '1'.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Find the fundamental period of the following function: f(x)=(sin12x)/(1+cos^(2)6x)

Discuss the extrema of the following functions (i)f(x)=|x|,(ii)f(x)=e^(-|x|),(iii) f(x)=x^(2//3)