Home
Class 12
MATHS
The fundamental period of the function f...

The fundamental period of the function `f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2))` is equal to :

Text Solution

AI Generated Solution

To find the fundamental period of the function \( f(x) = 4 \cos^4\left(\frac{x - \pi}{4\pi^2}\right) - 2 \cos\left(\frac{x - \pi}{2\pi^2}\right) \), we will analyze each component of the function separately. ### Step 1: Identify the periods of the cosine functions The function consists of two parts: 1. \( 4 \cos^4\left(\frac{x - \pi}{4\pi^2}\right) \) 2. \( -2 \cos\left(\frac{x - \pi}{2\pi^2}\right) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

Lt_(x to (pi)/(2))(2x-pi)/(cos x) is equal to

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Range of the function f(x)=sqrt(cos^(- 1)(sqrt(log_4x))-pi/2)+sin^(- 1)((1+x^2)/(4x)) is equal to (A) (0,pi/2+sqrt(pi/2)] (B) [pi/2,pi/2+sqrt(pi/2)] (C) [pi/6,pi/4) (D) {pi/6}

Range of the function f(x)=sqrt(cos^(- 1)(sqrt(log_4x))-pi/2)+sin^(- 1)((1+x^2)/(4x)) is equal to (A) (0,pi/2+sqrt(pi/2)] (B) [pi/2,pi/2+sqrt(pi/2)] (C) [pi/6,pi/4) (D) {pi/6}

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

Verify Rolles theorem for function f(x)=cos2(x-pi//4) on [0,\ pi//2] .